Search for Author, Title, Keyword
Effects of γ-Irradiation of Wild Thyme (Thymus serpyllum L.) on the Phenolic Compounds Profile of Its Ethanolic Extract
 
More details
Hide details
 
Publication date: 2017-12-31
 
 
Pol. J. Food Nutr. Sci. 2017;67(4):309-315
 
KEYWORDS
ABSTRACT
The presented study revealed that there were changes in the phenolic compounds profile of extract of wild thyme (Thymus serpyllum L.) after γ-irradiation at the dose of 5 kGy. Ethanolic extracts of irradiated and non-irradiated herb were prepared and their compounds were analyzed by RP-HPLC-DAD technique. Between thirty two detected constituents, twelve phenolic compounds classified as hydroxybenzoic and hydroxycinnamic acids derivatives, flavones and flavanones were identified. Among them, caffeic acid derivatives and flavones predominated with the highest content of rosmarinic acid and luteolin-7-O-glucoside, respectively. Additionally, thymol was recognized in the analyzed extracts. γ-Irradiation slightly affected the quantitative profile of phenolic compounds of a wild thyme ethanolic extract. Only four constituents differed significantly (P<0.05) in terms of their content in the irradiated and non-irradiated samples. The content of phenolic acids (p-coumaric and caffeic acids) decreased and that of flavonoid aglycons (luteolin and eriodictyol) increased after the γ-ray treatment.
 
REFERENCES (37)
1.
Amarowicz R., Raab B., Karamać M., Antioxidative activity of an ethanolic extract of evening primrose. Nahrung, 1999, 43, 216–217.
 
2.
Amarowicz R., Żegarska Z., Rafałowski R., Pegg R.B., Karamać M., Kosińska A., Antioxidant activity and free radical-scavenging capacity of ethanolic extracts of thyme, oregano, and marjoram. Eur. J. Lipid Sci. Tech., 2009, 111, 1111–1117.
 
3.
Boros B., Jakabová S., Dörnyei Á., Horváth G., Pluhár Z., Kilár F., Felinger A., Determination of polyphenolic compounds by liquid chromatography–mass spectrometry in Thymus species. J. Chromatogr. A., 2010, 1217, 7922–7980.
 
4.
Brandstetter S., Berthold C., Isnardy B., Solar S., Elmadfa I., Impact of gamma-irradiation on the antioxidative properties of sage, thyme, and oregano. Food Chem. Toxicol., 2009, 47, 2230–2235.
 
5.
Cussonneau X., de Smet E., Lantsoght K., Salvi J.P., Bolon-Larger M., Boulieu R., A rapid and simple HPLC method for the analysis of propofol in biological fluids. J. Pharm. Biomed. Anal., 2007, 44, 680–682.
 
6.
de Camargo A.C., Vieira T.M.F.S., Regitano-D’Arce M.A.B., Calori-Domingues M.A., Canniatti-Brazaca S.G., Gamma radiation effects on peanut skin antioxidants. Int. J. Mol. Sci., 2012, 13, 3073–3084.
 
7.
de Camargo A.C., Regitano-d'Arce M.A.B., Gallo C.R., Shahidi F., Gamma-irradiation induced changes in microbiological status, phenolic profile and antioxidant activity of peanut skin. J. Funct. Foods, 2015, 12, 129–143,.
 
8.
Deng W.W., Wu G.Y., Guo L.J., Long M., Li B., Liu S.L., Cheng L., Pan X., Zou L.K., Effect of gamma radiation on Escherichia coli, Salmonella enterica Typhimurium and Aspergillus niger in peppers. Food Sci. Technol. Res., 2015, 21, 241–245.
 
9.
de Rijke E., Out P., Niessen W.M., Ariese F., Gooijer C., Brinkman U.A., Analytical separation and detection methods for flavonoids. J. Chromatogr. A., 2006, 1112, 31–63.
 
10.
EC. 1999, Directive 1999/3/EC of the European Parliament and of the Council on the establishment of a community list of foods and food ingredients treated with ionising radiation. Official Journal of the European Communities, L66, pp. 24–25.
 
11.
Fecka I., Turek S., Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: thyme, wild thyme and sweet marjoram by chromatographic techniques. Food Chem., 2008, 108, 1039–1053.
 
12.
Janiak M.A., Slavova-Kazakova A., Karamać M., Kancheva V., Terzieva A., Ivanova M., Tsrunchev T., Amarowicz R., Effects of gamma-irradiation on the antioxidant potential of traditional Bulgarian teas. Nat. Prod. Commun., 2017, 12, 181–184.
 
13.
Jayasena D.D., Jo C., Potential application of essential oils as natural antioxidants in meat and meat products: a review. Food Rev. Int., 2014, 30, 71–90.
 
14.
Karamać M., Biskup I., Kulczyk A., Fractionation of buckwheat seed phenolics and analysis of their antioxidant activity. Pol. J. Food Nutr., Sci., 2015, 65, 243–249.
 
15.
Kilcast D., Food irradiation: Current problems and future potential. Int. Biodeterior. Biodegrad., 1995, 36, 279–296.
 
16.
Kulišić T., Dragović-Uzelac V., Miloš M., Antioxidant activity of aqueous tea infusions prepared from oregano, thyme and wild thyme. Food Technol. Biotechnol., 2006, 44, 485–492.
 
17.
Lin L.Z., Harnly J.M., Quantitation of flavanols, proanthocyanidins, isoflavones, flavanones, dihydrochalcones, stilbenes, benzoic acid derivatives using ultraviolet absorbance after identification by liquid chromatography–mass spectrometry. J. Agric. Food Chem., 2012, 60, 5832–5840.
 
18.
Mañas P., Pagán R., Microbial inactivation by new technologies of food preservation. J. Appl. Microbiol., 2005, 98, 1387–1399.
 
19.
Martins N., Barros L., Santos-Buelga C., Silva S., Henriques M, Ferreira I.C.F.R., Decoction, infusion and hydroalcoholic extract of cultivated thyme: Antioxidant and antibacterial activities, and phenolic characterization. Food Chem., 2015, 167, 131–137.
 
20.
Miron T.L., Plaza M., Bahrim G., Ibáñez E., Herrero M., Chemical composition of bioactive pressurized extracts of Romanian aromatic plants. J. Chromatogr. A, 2011, 1218, 4918–4927.
 
21.
Morales R., The history, botany and taxonomy of the genus Thymus. 2002, in: Thyme: the genus Thymus (eds. E. Stahl-Biskup & F. Sáez). CRC Press, Taylor & Francis Group, New York, USA, pp. 1–43.
 
22.
Nagy T.O., Solar S., Sontag G., Koenig J., Identification of phenolic components in dried spices and influence of irradiation. Food Chem., 2011, 128, 530–534.
 
23.
Napoli E., Mazzaglia A., Restuccia C., Ragni P., Lanza C.M., Ruberto G., The effect of γ-irradiation on chemical composition, microbial load and sensory properties of Sicilian oregano. LWT - Food Sci. Technol., 2016, 72, 566–572.
 
24.
Nikolić M., Glamoclija J., Ferreira I.C.F.R., Calhelha R.C., Fernandes A., Marković T., Marković D., Giweli A., Soković M., Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind. Crops. Prod., 2014, 52, 183–190.
 
25.
Opara E.I., Chohan M., Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. Int. J. Mol. Sci., 2014, 15, 19183–19202.
 
26.
Pereira E., Barros L., Duẽnas M., Antonio A.L., Santos-Buelga C., Ferreira I.C.F.R., Gamma irradiation improves the extractability of phenolic compounds in Ginkgo biloba L. Ind. Crops Prod., 2015, 74, 144–149.
 
27.
Pereira E., Barros L., Antonio A.L., Cabo Verde S., Santos-Buelga C., Ferreira I.C.F.R., Infusions from Thymus vulgaris L. treated at different gamma radiation doses: Effects on antioxidant activity and phenolic composition. LWT - Food Sci. Technol., 2016a, 74, 34–39.
 
28.
Pereira E., Pimenta A.I., Calhelha R.C., Antonio A.L., Cabo Verde S., Barros L., Santos-Buelga C., Ferreira I.C.F.R., Effects of gamma irradiation on cytotoxicity and phenolic compounds of Thymus vulgaris L. and Mentha x piperita L. LWT - Food Sci. Technol., 2016b, 71, 370–377.
 
29.
Pérez M.B., Calderón N.L., Croci C.A., Radiation-induced enhancement of antioxidant activity in extracts of rosemary (Rosmarinus officinalis L.). Food Chem., 2007, 104, 585–592.
 
30.
Rasooli I., Mirmostafa S.A., Antibacterial properties of Thymus pubescens and Thymus serpyllum essential oils. Fitoterapia, 2002, 73, 244–250.
 
31.
Robbins R.J., Phenolic acids in foods: an overview of analytical methodology. J. Agric. Food Chem., 2003, 51, 2866−2887.
 
32.
Sadecka J., Irradiation of spices – a review. Czech J. Food Sci., 2007, 25, 231–242.
 
33.
Sonmezdag A.S., Kelebek H., Selli S., Characterization of aroma-active and phenolic profiles of wild thyme (Thymus sepyllum) by GC-MS-Olfactometry and LS-ESI-MS/MS. J. Food Sci. Technol., 2016, 53, 1957–1965.
 
34.
Suhaj M., Rácová J., Polovka M., Brezová V., Effect of γ-irradiation on antioxidant activity of black pepper (Piper nigrum L.). Food Chem., 2006, 97, 696–704.
 
35.
Tokuşoğlu Ö., Effect of high hydrostatic pressure processing strategies on retention of antioxidant phenolic bioactives in foods and beverages – a review. Pol. J. Food Nutr. Sci., 2016, 66, 243–251.
 
36.
Viuda-Martos M., Ruiz-Navajas Y., Fernández-López J., Pérez-Álvarez J.A., Spices as functional foods. Crit. Rev. Food Sci. Nutr., 2010, 51, 13–28.
 
37.
WHO. 1998, Quality control methods for medicinal plant materials. Geneva, World Health Organization.
 
 
CITATIONS (13):
1.
Antioxidant Activity and Phenolic Composition of Amaranth (Amaranthus caudatus) during Plant Growth
Magdalena Karamać, Francesco Gai, Erica Longato, Giorgia Meineri, Michał Janiak, Ryszard Amarowicz, Pier Peiretti
Antioxidants
 
2.
Phenolic Composition and Antioxidant Activities of Soybean (Glycine max (L.) Merr.) Plant during Growth Cycle
Pier Peiretti, Magdalena Karamać, Michał Janiak, Erica Longato, Giorgia Meineri, Ryszard Amarowicz, Francesco Gai
Agronomy
 
3.
Polyphenolic extracts from the xerophyte Rhamnus lycioides as a radiation biodosimeter
Sihem Guesmi, Amel Raouafi, Ismail Amri, Ahmed Hamzaoui, Abdennacer Boulila, Faouzi Hosni, Haitham Sghaier
Environmental Science and Pollution Research
 
4.
Impact of carboxymethyl cellulose coating enriched with Thymus vulgaris L. extract on physicochemical, microbial, and sensorial properties of fresh hazelnut ( Corylus avellana L.) during storage
Razie Razavi, Yahya Maghsoudlou, Mehran Aalami, Mohammad Ghorbani
Journal of Food Processing and Preservation
 
5.
Effect of gamma irradiation on cytotoxicity, phenolics content and acute toxicity of Cuscuta chinensis L. extract
Fatemeh Alijaniha, Fatemeh Emadi, Mohsen Naseri, Mohammad Kamalinejad, Elahe Motevaseli, Malihe soodi, Roya Karimi
Radiation Physics and Chemistry
 
6.
Synergistic, additive, and antagonistic antioxidant effects in the mixtures of curcumin with (−)-epicatechin and with a green tea fraction containing (−)-epicatechin
Adriana Slavova-Kazakova, Michał Janiak, Katarzyna Sulewska, Vessela Kancheva, Magdalena Karamać
Food Chemistry
 
7.
Extraction Processes Affect the Composition and Bioavailability of Flavones from Lamiaceae Plants: A Comprehensive Review
Manuel Picos-Salas, José Heredia, Nayely Leyva-López, Dulce Ambriz-Pérez, Erick Gutiérrez-Grijalva
Processes
 
8.
Phenolic Antioxidants in Foods: Chemistry, Biochemistry and Analysis
Alam Zeb
 
9.
Variations of genotypes of Vicia species as influenced by seed phenolic compounds and antioxidant activity
Hakime Orak, Magdalena Karamać, Ryszard Amarowicz, Adnan Orak, Michał Janiak, Hazım Tenikecier
Zemdirbyste-Agriculture
 
10.
Non-Volatile and Volatile Bioactives of Salvia officinalis L., Thymus serpyllum L. and Laurus nobilis L. Extracts with Potential Use in the Development of Functional Beverages
Ivanka Maleš, Verica Dragović-Uzelac, Igor Jerković, Zoran Zorić, Sandra Pedisić, Maja Repajić, Ivona Garofulić, Ana Dobrinčić
Antioxidants
 
11.
Iron, Zinc, Copper, Manganese and Chromium in Green Teas, Their Transfer to Extracts and Correlations between Contents of Elements and Bioactive Compounds
Małgorzata Herman, Michał Janiak, Józefa Sadlik, Wojciech Piekoszewski, Ryszard Amarowicz
Polish Journal of Food and Nutrition Sciences
 
12.
Phenolic, Headspace and Sensory Profile, and Antioxidant Capacity of Fruit Juice Enriched with Salvia officinalis L. and Thymus serpyllum L. Extract: A Potential for a Novel Herbal-Based Functional Beverages
Ivanka Maleš, Ana Dobrinčić, Zoran Zorić, Sanda Vladimir-Knežević, Garofulić Elez, Maja Repajić, Danijela Skroza, Igor Jerković, Verica Dragović-Uzelac
Molecules
 
13.
Phenolic Profile and Antioxidant Potential of Beverages from Buckwheat and Side Streams after Beverages Production
Michał Janiak, Magdalena Karamać, Katarzyna Sulewska, Ryszard Amarowicz, Petko Denev, Adriana Slavova-Kazakova
Processes
 
eISSN:2083-6007
ISSN:1230-0322
Journals System - logo
Scroll to top