Exploring the Interactions Between Caffeic Acid and Human Serum Albumin Using Spectroscopic and Molecular Docking Techniques

Ali Jahanban-Esfahlan1,2, Leila Roufegarinejad3, Mahnaz Tabibiazar4,5, José M. Lorenzo6,7, Ryszard Amarowicz8*

1Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166–15731, Iran
2Department of Biology, Faculty of Fundamental Sciences, University College of Nabi Akram (UCNA), Tabriz, Iran
3Department of Food Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
4Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
5Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
6Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain
7Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
8Department of Chemical and Physical Properties of Food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10–486 Olsztyn, Poland

Key words: human serum albumin (HSA), fluorescence, caffeic acid, interaction, molecular docking

Ultraviolet-visible (UV–Vis) and fluorescence spectroscopy along with molecular docking were used to explore the interaction between human serum albumin (HSA) and caffeic acid (CA). CA is one of the major representatives of hydroxycinnamic acids in plants and is commonly present in plant-based foods. The mechanism by which CA quenched HSA fluorescence was determined to be static, and the values obtained for thermodynamic parameters indicated that the CA and HSA interaction was spontaneous. Hydrogen bonds and van der Waals forces were the main driving forces stabilizing the complex. The binding constant was in the order of 10⁴/M and the number of binding sites for CA on HSA was calculated to be close to one. The results of fluorescence and UV–Vis spectroscopy showed that CA induced conformational changes in HSA structure. The distance of CA and the tryptophan residue of HSA, was determined to be ~2 nm by using Forster resonance energy transfer theory. The mode of binding and the binding site of CA on albumin were examined by performing molecular docking calculations. CA interacted with albumin in subdomain IA, and non–covalent interactions stabilized the complex. CA showed a high affinity for albumin, and thus this phenolic compound would be distributed in the body upon interacting with HSA.

ABBREVIATIONS

CA – caffeic acid; FRET – Forster resonance energy transfer; H–bonds – hydrogen bonds; HCAs – hydroxycinnamic acids; HAS – human serum albumin; IFE – internal filter effect; SV – Stern–Volmer; UV–Vis – ultraviolet-visible; and vDW – van der Waals.

INTRODUCTION

Caffeic acid (CA) with the chemical name of 3,4-dihydroxycinnamic acid is a natural, plant–derived phenolic compound that belongs to the class of hydroxycinnamic acids (HCAs). CA is commonly present in foods of plant origin, with fruits and products obtained from them being a particularly abundant source of this compound [El-Seedi et al., 2012; Pirjo et al., 2006; Tomasević et al., 2019]. In fruits, it may constitute up to 70% of the total HCAs content [Sova & Saso, 2020]. The relatively good bioavailability of CA makes it possible to interact with human serum albumin (HSA) in the body [Rashmi & Negi, 2020]. In a cross-over study with 4 female and 3 male healthy ileostomy subjects, 95% of the ingested caffeic acid was absorbed from the small intestine in humans [Olthof et al., 2001]. CA possesses different biological activities, such as antioxidant properties due to its high radical scavenging activity, and immunomodulatory, anti-inflammatory, antidepressant, antimetastatic, anticarcinogenic, HIV replication-inhibitory, and antiamyotrophic activities [Chen & Ho, 1997; El-Seedi et al., 2012; Sova & Saso, 2020]. Additionally, CA has been reported to induce apoptosis in cancerous cells and inhibit tumor proliferation in animal models CA [Bhat et al., 2007; Chung et al., 2006]. Among the various serum proteins in the bloodstream of the human body, HSA is the abundant biomacro-
molecule (~60%). Its role in the circulatory system is crucial because it functions as a transporter for various chemicals and pharmaceuticals [Jahanban-Esfahan et al., 2016, 2019]. Immediately after transport into the blood, various bioactive substances interact with albumin and are efficiently distributed throughout the body [Roufegarinejad et al., 2019]. Thus, HSA has a high affinity for a broad spectrum of endogenous and exogenous molecules, including food-derived bioactive compounds or other various chemicals. Furthermore, the solubility of poorly-soluble compounds increased upon their binding to HSA and, thus, the weak or strong interactions between chemicals and albumin will affect their fate in the blood [Roufegarinejad et al., 2019].

HSA is categorized as a globular protein, and its molecular weight is 66.4 kDa. It has a heart-shaped structure, and includes 586 amino acids. Structurally, HSA includes three main homologous domains called domains I, II and III, and two A and B subdomains constructing each domain. Albumin contains two major binding sites named Sudlow’s sites I and II. The first site is located in subdomain IIA, while the another is located in subdomain IIA. Most of the molecules and chemicals bind to these regions of albumin [Jahanban-Esfahan et al., 2015, 2019, 2020]. Although some data are available in the scientific literature for the interaction of CA and serum albumins [Adzet et al., 1988; Li et al., 2010; Min et al., 2004; Precupas et al., 2017; Sinisi et al., 2015; Skrt et al., 2012; Suryaprakash et al., 2000; Zhang et al., 2008], detailed information about the interaction of CA and HSA is scarce. Additionally, most of these investigations did not report full details regarding the binding of CA to albumin using fluorescence spectroscopy. Thus, the current study may be the first comprehensive report of the interaction of HSA and CA utilizing fluorescence and UV–Vis spectroscopy approaches. Furthermore, molecular docking was performed using the ArgusLab software. The obtained results have been discussed to clarify the nature of the interaction between CA and HSA. The results of the present study are expected to fill the current gap in the protein binding properties of CA, which is an important plant–based phenolic compound in human health and nutrition.

MATERIALS AND METHODS

Materials

CA and fatty acid-free HSA were obtained from Sigma–Aldrich (Saint Louis, MO, USA) and used as received. The analytical-grade solvents and reagents were used without additional purification in the present study. Double distilled water was used in all the experiments.

Preparation of stock solutions

The phosphate buffer considered in this study was prepared at a concentration of 10 mM using potassium salts including KH2PO4 and K2HPO4 and then, NaOH was used for its pH adjustment. In the next step, phosphate buffer with physiological pH adjusted at 7.4 was used for the preparation of HSA stock and working solutions. Thus, the HSA stock solution was prepared by directly dissolving the protein powder in the prepared phosphate buffer. An ethanolic stock solution of CA with a concentration of 10 mM was prepared by dissolving specific amounts of CA powder in ethanol. The solutions used for fluorescence and UV–Vis spectroscopy were diluted appropriately from the prepared stock solutions.

Fluorescence spectroscopy

A Jasco FP-750 fluorescence spectrophotometer (Kyoto, Japan) was used to record fluorescence spectra. The light source of the apparatus was a xenon lamp, and the width of the quartz cell was 1 cm. An instrument composed of a stirrer and a cell holder with a water jacket was used as a temperature controller. The fluorescence spectroscopy experiments were carried out at temperatures of 290, 300 and 310 K. The corresponding fluorescence intensities for the emission wavelength (349 nm) were obtained using an excitation wavelength of 290 nm. A fixed slit width of 5 nm was applied for both excitation and emission wavelengths. The scan speed was 1200 nm/min. Using 2.5 µM HSA (a constant concentration) and increasing concentrations of CA (0, 2.5, 10, 30, 50, 70, and 90 µM), all fluorescence spectra were recorded at pH 7.4.

An experimental internal filter effect (IFE) may have reduced the emission intensity to some extent when spectra were recorded in the presence of increasing CA concentrations. This effect is an obvious issue affecting many fluorimetric methods, leading to a deviation of the results from the initial linearity, and therefore this effect must be considered. The fluorescence intensities were subsequently corrected for the absorption of the light at the excitation wavelength and reabsorption of the emitted light to reduce the IFE using the following equation:

\[
F_{cor} = F_{obs} \times 10^{(A_{ex} + A_{em})/2}
\]

where: \(F_{cor} \) and \(F_{obs} \) are the corrected and observed fluorescence intensities, respectively, and \(A_{ex} \) and \(A_{em} \) are the absorption of the CA at the excitation and the emission wavelengths [Roufegarinejad et al., 2019], respectively. The fluorescence intensity reported in this study is the fluorescence intensity that has been corrected.

The data obtained from the HSA fluorescence quenching experiment were evaluated using the Stern–Volmer (SV) equation to clarify the mechanism by which CA quenched HSA. The SV equation is presented as follows [Lakowicz, 2006]:

\[
\frac{F_0}{F} = 1 + K_{SV} [Q] = 1 + K_q \tau_0 [Q]
\]

where: \(F \) and \(F_0 \) are the fluorescence emission intensities of HSA in the presence and absence of the quencher, respectively; \(K_q \) is the constant of the quenching rate for the biomolecule; \(\tau_0 \) (equals \(10^{-8} \) s) is the average lifetime of the biomolecule in the absence of quencher [Chen et al., 1990; Eftink, 1991]; \([Q]\) and \(K_{SV} \) are the concentration of quencher and the con-
The overlapping region of the UV–Vis spectrum for the CA molecule and the HSA fluorescence spectrum was considered to determine the energy transfer and the distance (r) between CA as the acceptor and the tryptophan (Trp) residue of HSA as the donor. An equal concentration of 30 µM was used to obtain the UV–Vis spectrum of CA and HSA fluorescence spectrum, at wavelengths ranging from 200 to 500 nm.

According to the theory of energy transfer presented by Forster, the value of E (the efficiency of energy transfer) was obtained from the following equation [Lakowicz, 2006]:

\[E = 1 - \frac{F}{F_0} = \frac{R_0^6}{R_0^6 + r^6} \]

where: R_0 is the critical distance with 50% energy transfer efficiency; r is the distance between the donor and acceptor molecules; and F and F_0 are the fluorescence intensities of the HSA in the absence and presence of CA, respectively. R_0 was obtained from Eq. 9:

\[R_0^6 = 8.8 \times 10^{-25} k^2 N^{-4} \varepsilon J \]

where: J is the overlap between the integral of acceptor absorption and the emission spectrum of donor fluorescence, \varepsilon is the quantum yield of the donor fluorescence, N is the medium refractive index, and k is the dipole spatial orientation factor [Lakowicz, 2006]. Accordingly, J was calculated by Eq. 10:

\[J = \frac{\sum F(\lambda)\varepsilon(\lambda)\lambda^4\Delta\lambda}{\sum F(\lambda)\Delta\lambda} \]

The molar absorption coefficient of the acceptor is \varepsilon(\lambda) at wavelength \lambda, and the fluorescence intensity of the fluorescent donor at wavelength \lambda is F(\lambda). Notably, 2/3, 0.118, and 1.336 are the values proposed for K_c, \Phi, and N, respectively [Samari et al., 2012].

Molecular docking studies

The binding sites for CA molecules and the binding energy of the formed CA–HSA complex were investigated using molecular docking. The crystal structure of HSA (PDB ID: 1AO6) was obtained from the Worldwide Protein Data Bank [wwPDB, https://www.rcsb.org/structure/1ao6]. Upon the removal of water and ligand molecules and the addition of hydrogen atoms, the docking calculations were performed using the ArgusLab 4.0.1 docking software [Jahanban-Esfahlan et al., 2017]. Notably, 0.4 and 80×80×80 angstroms were selected as the grid resolution and the size of the binding site bounding box, respectively. For all docking runs, a maximum of 200 candidate poses were used, and the docking engine was Argus Dock. A flexible form of the ligand was selected, and the conformations were ranked to estimate the value of the binding energy using the Ascore scoring function. Ligand–receptor complexes resulting from molecular docking were comprehensively analyzed using PyMOL [Wang et al., 2008].

RESULTS AND DISCUSSION

Quenching of HSA fluorescence in the presence of CA

The fluorescence properties of aromatic amino acids, such as Trp, phenylalanine (Phe) and tyrosine (Tyr), in the structure of serum albumins enable researches to study the inter-
FIGURE 1. Fluorescence emission spectra of 2.5 µM human serum albumin (HSA) mixed with different concentrations of caffeic acid (CA) (λex=290 nm) at 310±1 K. From top to bottom, CA concentrations were 0, 2.5, 10, 30, 50, 70, and 90 µM (A). The Stern–Volmer (SV) plots obtained at different temperatures for the fluorescence quenching of HSA by CA (B). Modified SV plots obtained at different temperatures for the CA–HSA complex (C). Logarithmic SV plots used to determine the number of binding sites for CA molecules per HSA molecule (D). The Van’t Hoff plot obtained for HSA–CA complex in a phosphate buffer and pH 7.4 used to calculate the thermodynamic parameters (E). UV absorption spectra of HSA in the absence and presence of CA. The solid lines are the spectra of CA in the absence of HSA. The dashed line is the UV absorption spectrum of HSA alone. The dotted lines represent the spectrum of HSA in the presence of CA (F).
actions between different ligands and HSA using a fluorescence quenching method. For the HSA molecule, its intrinsic fluorescence is related to the Trp residue because of the low quantum yield of Phe or the ionization of Tyr [Mrkalić et al., 2021; Sudhamalla et al., 2010]. Additionally, the fluorescence of Tyr is generally quenched when it is located in the vicinity of a carboxyl or amino groups, as well as other Trp residue [Jahanban-Esfahlan et al., 2017]. Figure 1A shows the fluorescence emission spectra recorded for HSA before and after the addition of different concentrations of CA. The sharp peak near 350 nm was related to the fluorescence emission of HSA. A regular reduction in the fluorescence intensity from the top to the bottom of the recorded peaks was observed in the presence of increasing CA concentrations, confirming the binding of CA to HSA and the quenching of the intrinsic fluorescence intensity of albumin.

Furthermore, upon CA addition, the maximum peak in the obtained HSA emission spectra exhibited a remarkable shift from 348 nm to 357 nm (9 nm), indicating a change in the polarity of the microenvironment surrounding the chromophore of HSA [Nair, 2018]. Similar results have been previously reported [Belatik et al., 2012; Cui et al., 2004; Mrkalić et al., 2021; Razzak et al., 2019]. This alteration is attributed to the loss of the compact albumin structure in the hydrophobic binding site pocket of subdomain IIA, and the location of Trp residue in this region of the protein is the reason of that alteration [Sułkowska 2002]. In the next steps, the obtained data for fluorescence quenching at a maximum peak of 349 nm and a temperature of 310±1 K were used for the quantitative analysis of CA and HSA interaction.

Fluorescence quenching mechanism analysis

Fluorescence quenching is caused by a reduction in the fluorescence quantum yield resulting from the interactions between the fluorophore and quencher molecules. Commonly, static and dynamic quenching are the two main mechanisms investigated when analyzing the type of fluorescence quenching. Usually, a formation of a ground-state complex without any fluorescence is recognized as static quenching, but a collisional encounter of the fluorophore and quencher is acknowledged as dynamic quenching [Lakowicz, 2006].

As illustrated in Figure 1B, the presented plots derived from the SV equation (2) for HSA in the presence of increasing concentrations of CA at three considered temperatures were linear. Thus, a static quenching mechanism underlies the HSA–CA interaction. Using the slope regression curve of F/F vs. [Q], K and Ksv values were obtained as tabulated in Table 1. In dynamic quenching, 10⁴/M·s is the maximum value for the quenching constant in the scatter collision of various quenchers and biopolymers [Lakowicz & Weber, 1973]. Principally, fluorescence quenching depends on temperature changes, and thus, the main type of quenching is easily distinguished [Nair, 2018]. For the static quenching mechanism, Ksv values decreased with increasing temperature, but the opposite results are expected for dynamic quenching. As shown in Table 1, K and Ksv values clearly decreased as the temperature increased. Additionally, the calculated values for K are much larger than 10⁴/M·s, indicating that the HSA quenching mechanism induced by CA is static quenching and not dynamic quenching. Also other phenolic acids (cinnamic acid), flavonoids (glabridin, diosmetin), and stilbenes (resveratrol) quenched the fluorescence of HSA through the static mode.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>Ksv (×10⁴/M)</th>
<th>r²</th>
<th>H (kJ/mol)</th>
<th>S (J/mol·K)</th>
<th>G (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td>4.25</td>
<td></td>
<td>-32.75</td>
<td>-26.22</td>
<td>-26.43</td>
</tr>
<tr>
<td>300</td>
<td>2.43</td>
<td></td>
<td>0.93</td>
<td>0.9981</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>1.53</td>
<td></td>
<td>0.91</td>
<td>0.9962</td>
<td></td>
</tr>
</tbody>
</table>

r² is the linear correlation coefficient.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>Ka (×10⁴/M)</th>
<th>r²</th>
<th>H (kJ/mol)</th>
<th>S (J/mol·K)</th>
<th>G (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td>5.85</td>
<td></td>
<td>-26.43</td>
<td></td>
<td>-26.22</td>
</tr>
<tr>
<td>300</td>
<td>3.52</td>
<td></td>
<td>0.93</td>
<td>0.9981</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>2.44</td>
<td></td>
<td>0.91</td>
<td>0.9962</td>
<td></td>
</tr>
</tbody>
</table>

r² is the linear correlation coefficient.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>Kp (×10⁴/M)</th>
<th>n</th>
<th>r²</th>
<th>H (kJ/mol)</th>
<th>S (J/mol·K)</th>
<th>G (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td>2.18</td>
<td>0.93</td>
<td></td>
<td>0.9981</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>1.14</td>
<td>0.92</td>
<td></td>
<td>0.9940</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>0.64</td>
<td>0.91</td>
<td></td>
<td>0.9962</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

r² is the linear correlation coefficient.

As observed in Figure 1C, plotting Kp(F/F-F) vs. 1/[Q] yields 1/f and 1/(fKp) as the y-coordinate and the slope, respectively. Table 2 lists the calculated Kp values for the CA–HSA complex. Similarly, as the temperature increased, the obtained Kp values showed a decreasing trend verifying the decreasing trend observed for the Ksv (Table 1).

Binding constant and the number of binding sites

Figure 1D displays the log(F/F-F)/F vs. log[Q] plots of the CA–HSA complex investigated at the three temperatures, and Table 3 summarizes the corresponding values calculated for n and Kp. An increase in temperature led to a decrease in the values of Kp. The CA–HSA complex was not stable as the temperature increased, which might explain the decreasing values of Kp. According to the obtained values for the number of binding sites, n values were near unity, indicating that CA had one independent binding site on the HSA.
molecule. The results obtained here were in good agreement with the values reported before. For example, comparative studies on the interaction of chlorogenic acid, caffeic acid, and ferulic acid with bovine serum albumin (BSA) using UV absorption spectroscopy, fluorescence spectroscopy, and synchronous fluorescence spectroscopy showed that the binding constant and n values were in the order of 10^5/M and ~1, respectively [Li et al., 2010]. Similar results were also reported for CA when the interactions between different phenolics and BSA were investigated using fluorescence quenching and molecular docking [Skrt et al., 2012].

UV–Vis spectroscopy

The structural changes and an understanding of the formation of a complex between different molecules and proteins are usually investigated with a suitable and effortless spectroscopic technique, such as UV–Vis spectroscopy. Therefore, UV–Vis spectra were recorded, and the results are shown in Figure 1F. At the wavelength of 280 nm, the intensity of the recorded UV–Vis spectra of HSA increased when increasing concentrations of CA were applied. The position of the maxima was also slightly shifted to higher wavelengths. These observations might be related to the change in the polarity and the hydrophobicity around the Trp residue [Ulrich, 1981, 1990; Tao et al., 1981], as observed in the fluorescence experiments. Hence, CA binds HSA and induces conformational changes in the albumin structure [Cui et al., 2004]. The transfer of energy during the collision between albumin molecules and the interacting substances is mainly mediated by dynamic quenching, with no alterations in the UV–Vis spectrum of albumin. However, for static quenching, the formation of complexes between various chemicals and proteins causes a decrease or an increase in the intensity of the UV–Vis spectrum for albumin [Jahanban-Esfahan et al., 2017; Roufegarinejad et al., 2019]. In the present study, HSA fluorescence emission quenching was principally related to the formation of the CA-HSA complex. Thus, the results of fluorescence quenching obtained for CA–HSA were sufficiently supported by the changes in the UV–Vis spectra.

Thermodynamic parameters

Typically, vdW forces, electrostatic forces, H–bonding, and hydrophobic interactions are the key forces driving the interaction of various chemicals and biomacromolecules [Bourassa et al., 2011; Dan et al., 2019, Nair, 2018; Zou et al., 2019]. The changes in Gibb’s free energy (ΔG), enthalpy (ΔH), and entropy (ΔS), the main thermodynamic parameters, should be considered to obtain a comprehensive understanding of the complexation mode between different ligands and proteins.

The process underlying the CA and HSA interaction was spontaneous because the value obtained for ΔG was negative, from –26.43 to –26.00 kJ/mol (Table 2). In protein–ligand interactions and according to the studies by Ross & Subramanian [1981], the amounts and the sign of thermodynamic parameters (ΔS and ΔH) are useful for studying the contribution of the main forces to the stability of the ligand–protein complexes. From the thermodynamic perspective, ΔH<0 and ΔS>0 represent support electrostatic forces, and ΔH>0 and ΔS<0 suggest hydrophobic interactions, and ΔS and ΔH<0 represent the H–bonding and vdW forces. As presented in Table 2, the calculated values for ΔS and ΔH in this study were –21.78 kJ/mol and –32.75 J/mol-K, respectively. The values calculated for ΔS and ΔH were negative indicating the enthalpy-driven interaction of CA and HSA; however, the entropy was unfavourable. Accordingly, the main driving forces stabilizing the complex were H–bonding and vdW forces.

Energy transfer

Forster resonance energy transfer (FRET) is known as the interaction between molecules with electronically excited states without the emission of a photon. The phenomenon is distance-dependent, and the energy of excitation is transferred from one donor molecule to another acceptor molecule [Lakowicz, 2006]. Several factors affect the FRET efficiency, such as: (1) the overlap region of the acceptor UV–Vis spectra and the donor emission, (2) the transition dipole orientation of the donor and acceptor, and (3) the distance between the donor and acceptor. The overlap in the spectroscopic region between the UV–Vis absorption spectrum of CA and the emission spectrum of HSA fluorescence is shown in Figure 1A.

Using equations (7), (8), and (9), J=1.6637×10–19 cm^3/M, E=0.075, R0=3.6616 nm, and r=1.92 nm were calculated for the CA–HSA complex. Here, the calculated value of r for the interaction of CA with HSA was consistent with the value reported in a previous study [Li et al., 2010]. The probability of energy transfer is high when the average distance of the acceptor and donor molecules is less than 8 nm [Samari et al., 2012]. The calculated value for the distance between the donor molecule (Trp residue) in HSA and the acceptor molecules (the interacting CA) was approximately 2 nm. Additionally, the calculated values for r and R0 followed the rule 0.5R0<r<1.5R0 [Jahanban-Esfahan et al., 2017; Roufegarinejad et al., 2019]. Thus, energy was transferred during the CA and HSA interaction.

Molecular docking

CA was docked to HSA using ArgusLab software to determine the ideal binding site and the binding mode. ArgusLab is a useful docking program that performs computational molecular docking to provide researches an understanding of the interaction of different molecules with albumin. The best conformational binding mode for the interaction of CA and HSA is displayed in Figure 2B. CA binds to another site of the HSA molecule that differs from the known binding sites I and II. CA interacts with HSA within subdomain IA in domain I. Figure 2C shows the H–bonds that formed between the CA molecule and the amino acids of HSA. The amino acid residues Asn–9, Gly–248, Asp–249, Leu–251, and Glu–252 formed H–bonds with the CA molecule. Moreover, six other amino acid residues of HSA, including Tyr–30, Phe–102, Gly–71, Leu–250, His–67 and Leu–74, surrounded the CA molecule in its binding site (these amino acids are not shown in the figure). The binding energy for CA-HSA complex was determined to be ~9.75 kcal/mol from the docking calculations. Both hydrophobic and hydrophilic
amino acids were located in the binding site of CA. Finally, molecular docking studies revealed the formation of numerous H–bonds in the CA-HSA confirming the results of fluorescence experiments.

CONCLUSIONS

In the present work, the interactions between CA and HSA have been analyzed using fluorescence spectroscopy, UV–Vis spectroscopy, and molecular docking methods, and numerous binding parameters have been obtained. A static quenching mechanism was identified for the intrinsic quenching of the HSA fluorescence by CA. The obtained values for the number of binding sites showed the presence of a single class of binding sites for the CA molecule on HSA. The interaction of CA and HSA was determined to be enthalpy-driven and spontaneous. The main driving forces stabilizing the complex were H–bonds and vdW forces. The molecular docking calculations indicated that CA binds to HSA in sub-domain IA of domain I of HAS, and the detected H–bonds confirmed the results of fluorescence spectroscopy. According to the results of fluorescence and UV spectroscopy, CA induced conformational changes in the albumin structure.

Caffeic acid shows a high affinity for albumin, and thus this phenolic compound would be distributed in the body upon interacting with HSA.

CONFLICT OF INTERESTS

Authors declare no conflict of interests.

ORCID IDs

R. Amarowicz https://orcid.org/0000-0001-9731-0045
A. Jahanban-Esfahan https://orcid.org/0000-0001-8693-3837
J.M. Lorenzo https://orcid.org/0000-0002-7725-9294
REFERENCES

