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Petals of edible flowers (EF) are rich in biologically active compounds with many proven benefits for human health. However, studies on the effects
of EF in humans after consumption are lacking. This pilot explorative study evaluated the changes in urinary phenolic excretion in healthy volunteers
to whom different doses of phenolics from edible roses (Gourmet Roses™) have been added to a meal. Rose petals were picked fresh once a week for
three weeks, showing significantly increasing values of total phenolic content, total anthocyanin content, and antioxidant activity (measured as ferric
reducing antioxidant power (FRAP) and as DPPH* and ABTS"* scavenging activities) from the first to the third week. After the meal, direct associa-
tions between urinary phenolics and both the EF phenolic content and the antioxidant activity were found in a multiple regression model. These new
insights on EF consumption, to be confirmed by larger trials, suggest that the urinary phenolic excretion of healthy volunteers increases with increasing

rose phenolic content.

INTRODUCTION

Edible flowers (EF) have been used in human nutrition
for hundreds of years and are popular in the European, Mid-
dle-East, Chinese, and Indian cultures [Lim, 2014a,b; Pires
et al., 2019; Scariot et al., 2018], thanks to their taste, beauty,
and aromas [Takahashi ef al., 2020]. EF are consumed either
fresh or minimally processed or in the form of different prepa-
rations [Fernandes ef al., 2020; Takahashi ef al., 2020]. Since
the late 1980’s, studies revealing the EF chemical composi-
tion and properties linked to the presence of several bioactive
compounds arose [Demasi et al., 2020; Falla et al., 2020; Fer-
nandes et al., 2020; Grzeszczuk et al., 2016; Rop et al., 2012;
Scariot et al., 2018], together with an increased awareness
of consumers towards the consumption of natural sources
of bioactive compounds [Fernandes ef al., 2020; Rop ef al.,
2012; Takahashi et al., 2020]. Petals of fresh EF are rich in vi-
tamins, minerals, and phenolics, a class of biologically active
compounds with many proven benefits [Liu, 2003; Loizzo
et al., 2016; Navarro-Gonzalez et al., 2015; Takahashi et al.,
2020]. Adequate intake of phenolics could confer benefits for
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human health, by reducing the risk of cardiovascular, dysmet-
abolic, and neurodegenerative diseases, and cancer (in partic-
ular gastrointestinal neoplasms), by eliciting anti-inflamma-
tory effects, and by favorably modulating the gut microbiota
composition [Fraga et al., 2019; Zamora-Ros et al., 2013].
Furthermore, phenolics have been reported to be inversely
associated with all-cause mortality and cardiovascular events
[Del Bo et al., 2019]. EF have a low-fat content and are rich
in water similarly to leafy vegetables [Gonzélez-Barrio et al.,
2018; Rop et al., 2012]. It has also been demonstrated that
many EF contain high amounts of phenolics, exceeding those
found in fresh fruits and vegetables. For instance, Rosa pendu-
lina petals have a total phenolic content of ~1,700 mg/100 g,
more than double than blackcurrant (~800 mg/100 g) or
blackberry (~600 mg/100 g) fruits [Demasi et al., 2021a;
Pérez-Jiménez et al., 2010b]. Looking at single classes
of phenolics, petals of Dianthus pavonius contain more than
2,000 mg/100 g of flavonols compared to ~100 mg/100 g
in spinach, or Paeonia officinalis contains ~800 mg/100 g
of benzoic acid compared to ~120 mg/100 g in raspberry, or
finally Taraxacum officinale have ~800 mg/100 g of cinnamic
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acids compared to the 200 mg/100 g of globe artichoke [De-
masiet al., 2021a; Pérez-Jiménez et al., 2010b]. It is therefore
evident that it is important to deepen the knowledge on flow-
ers composition in order to understand the role of their phe-
nolics in human metabolism.

The quantity and quality of secondary metabolites
and bioactive compounds in petals, similarly to other ana-
tomical parts of plants, may be influenced by several factors.
A wide variability in the amount and composition of metabo-
lites in plants have been recorded depending on the genotype
[Fiehn, 2002], the stage of development [Piccolella et al.,
2018], the environmental conditions [Demasi et al., 2018],
the cultivation practices [Caser ef al., 2019a,b; Najar et al.,
2019], the harvesting time [Pal & Singh, 2013], and storage
[Demasi et al., 2021b].

To date, a few EF species have been investigated and this
number is expected to increase [Fernandes et al., 2020;
Pires et al., 2019]. Rose (Rosa spp.) is one of the most be-
loved and known ornamental plants, with a complex genus
classification [Martinez et al., 2020; Smulders et al., 2019].
It is among the most frequently consumed EF worldwide
[Fernandes ef al., 2020], showing a high phenolic content
and antioxidant activity according to the genotype [Demasi
et al., 2021a; Fernandes et al., 2020; Guimaraes ef al., 2010;
Lietal., 2014; Luet al., 2016; Zheng et al., 2018]. At present,
the contribution of EF to human metabolism in vivo is almost
unexplored and data relative to phenolic urinary excretion af-
ter EF consumption in humans are lacking. We carried out an
exploratory pilot study in a small group of healthy volunteers
who were given a week away both a meal and the same meal
with the addition of rose petals with different phenolic con-
tents. Then we explored whether the fresh rose characteristics
(total phenolic content, total anthocyanin content, and anti-
oxidant activity) were associated with the excretion of pheno-
lics in human urine, after standardization of the meals.

MATERIALS AND METHODS

Chemicals and apparatus

Sodium carbonate, sodium acetate, potassium chloride,
potassium persulfate, hydrochloric acid, acetic acid, iron(ITI)
chloride hexahydrate, 2,2’-azino-bis(3-ethylbenzothiazoline-
-6-sulfonic acid) diammonium salt (ABTS), 2,4,6-tripyridyl-
-s-triazine (TPTZ), 2,2-diphenyl-1-picrylhydrazyl (DPPH
radical), Folin—Ciocalteu phenol reagent, and gallic acid were
purchased from Sigma Aldrich (St. Louis, MO, USA). Oaxis
MAX Cartridges were purchased from Waters (Milford, CT,
USA). A Cary 60 UV-Vis spectrophotometer (Agilent, Santa
Clara, CA, USA) was used to perform spectrophotometric
readings.

Plant material

Fresh open flowers of Gourmet Roses™ were provided
by the organic nursery RaveraBio® (Rzero Group di Orsini
L. & C., Albenga, SV, Italy) once a week from 1st to 21st June
2019. From each of the three supplies, part of the fresh petals
was used for the human experiment, and part was grinded
in a mortar using liquid nitrogen, then prepared for the spec-
trophotometric analysis of total phenolic and total anthocyanin

™

content, and antioxidant activity. One gram of flower powder
was extracted with 50 mL of a water-methanol solution (1:1,
v/v) at room temperature with ultrasound-assisted extraction
(Sarl Reus, Drap, France) at 23 kHz for 30 min. Three differ-
ent extractions were performed as replicates for each supply.
The solution was filtered with one-layer of filter paper (What-
man No. 1, Maidstone, UK) and preserved at -20°C until
the spectrophotometric analyses.

Total phenolic content of roses

The total phenolic content was analyzed using the Folin-
-Ciocalteu reagent [Demasi et al., 2021b], by mixing 750 uL
of the reagent (diluted 1:10) with 150 uL of the rose extract
and 600 uL of Na,CO, (7.5%). The solution was left in a dark
room at room temperature for 30 min. Then, its absorbance
was read at 765 nm, and results were expressed as g of gallic
acid equivalents (GAE) per kg of fresh flower (g GAE/kg).

Total anthocyanin content of roses

The pH-differential method was used for anthocyanin
measurement [Demasi ef al., 2020]. The rose extract (1 mL)
was mixed with 9 mL of an aqueous buffer solution at pH 1
(4.026 g KCI + 12.45 mL HCI 37% in a 1 L water volume)
in one flask. In another flask, 1 mL of the same rose extract
was mixed with an aqueous buffer solution at pH 4.5 (32.82 g
C,H,NaO, + 18 mL C,H,O, in a I L water volume). The so-
lutions were kept in the dark for 20 min at room temperature,
and their absorbance was read at 515 nm and 700 nm. Results
were expressed as g of cyanidin 3-O-glucoside (C3G) per kg
of fresh flower (g C3G/kg).

Antioxidant activity of roses

The antioxidant activity of roses was analyzed using dif-
ferent assays: the ferric reducing antioxidant power (FRAP),
DPPH, and ABTS [Demasiet al., 2021b]. The FRAP assay was
performed by mixing 30 uL of the rose extract with 90 uL of de-
ionized water and 900 uL of the FRAP reagent. The solution
was kept for 30 min at 37°C, and then its absorbance was mea-
sured at 595 nm, and results were expressed as millimoles of fer-
rous iron (Fe?*) equivalents per kg (mmol Fe**/kg). The DPPH
assay was performed with the following procedure: a DPPH"
solution was obtained by the reaction of 2 mg of DPPH" with
50 mL of MeOH, up to the absorbance of 1.000 at 515 nm.
Then, 3 mL of the DPPH" solution was mixed with 40 uL
of the rose extract. The mixture was left in the dark at room
temperature for 30 min, and then its absorbance was measured
at 515 nm. The ABTS assay was performed with the follow-
ing procedure: the ABTS radical cation solution was obtained
by the reaction of 7.0 mM ABTS with 2.45 mM K,S,0,, in-
cubated for 12-16 h in the dark at room temperature and di-
luted with distilled water until the absorbance of 0.70 had been
achieved at 734 nm. Then, 2 mL of the diluted ABTS"* solution
was mixed with 30 uL of the rose extract. The mixture was left
in the dark at room temperature for 10 min, and then its ab-
sorbance was measured at 734 nm. In both DPPH and ABTS
methods the results were expressed as mmol of Trolox equiva-
lents (TE) per kilogram (mmol TE/kg).

The water-methanol (1:1, v/v) extraction solution was
used as control in each analysis instead of the rose extract.
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The human experiment

Twenty healthy volunteers were enrolled for the experi-
ment. Inclusion criteria were age 20-70 years, and a body
mass index (BMID) 20-29 kg/m?. Exclusion criteria were:
treatment with any drugs and/or supplements, subjects
in any dietary regimen, pregnant and/or lactating women,
the presence of any known disease, active smoking, inability
to express informed consent to the study, and known flower
allergy. The study was conducted following a randomized
cross-over design [Kuntz ef al., 2015] and all participants
received the same meal without (M; meal without EF) or
with (EFM; meal + EF) the addition of 17 g of rose petals
after 1 week of wash out. Participants were randomized to
receive as a first meal either the meal without EF (M) or
the same meal with the addition of EF (EFM). Meals were
prepared by the same researcher in the same place; each
meal consisted of 2 courses, and their composition is re-
ported in

In a random order, 7, 8, and 5 participants received
the EFM supplied respectively in the first, second, and third
week. Randomization sequence was computer-generated
by a statistician. Participants were to consume either the M
or the EFM in 60-min under researchers’ supervision at
1:00 pm at the kitchen of the School of Dietetics (Univer-
sity of Turin). Volunteers had to eat both the two courses
each of the two days of the experiment. During each meal,
only water was allowed. The same dietary recommenda-
tions for the 24-h before each test and the 24-h after each
test were given to all participants. The energy content was
calculated according to the participant’s energy need (range
1500-1900 kcal); the dietary composition was 20 g/100 g
proteins, 30 g/100 g lipids, 50 g/100 g carbohydrates. Fi-
ber intake was restricted to 17 g/day, by reducing phenolic-
-rich foods (no more than 250 g fruit/day -only peeled apple
and banana allowed-, no more than 200 g vegetables/day
-only lettuce and zucchini allowed-, no wine, no tea, no cof-
fee, no cocoa) in order to avoid interference from dietary
polyphenols. The dietary phenolic intake was calculated
according to the published database [Neveu et al., 2010;

Rothwell et al., 2013]. Each participant completed both
a 1-day food record to collect data relative to food con-
sumption 24-h before each experiment and a validated food-
-frequency questionnaire to obtain data relative to usual di-
etary habits. Diet adherence was verified both by the 1-day
food recall and by telephone interview with each participant
the day before the experiment. Urine collection began from
4:00 pm of the day of the test until 4:00 pm of the day after
the test. Each volunteer was asked to urinate before the meal
and then to wait until 4:00 pm before the next voiding. All
procedures were in agreement with the principles of the Hel-
sinki Declaration; the study protocol, the questionnaires
used, the informed consent, the information for the partici-
pant and the curriculum vitae of the researchers were sub-
mitted to the attention of the Local Bioethics Committee
of the University of Turin on 25 March 2019. The study
protocol was approved by the Local Bioethics Commit-
tee of the University of Turin (No.176859, Turin, Italy) on
2 May 2019. Informed consent was obtained from all indi-
vidual participants included in the study.

Total phenolic content of urine

Urine samples were collected into sterilized 1.5 L bottles,
acidified with HCI to preserve the phenolic compounds in line
with literature [Roura et al., 20061, and processed the follow-
ing morning to avoid formation of artefacts and loss of phe-
nolic content. The total phenolic content excreted in urine
after consumption of the test meals was determined with
Folin-Ciocalteu assay after purifying the samples by solid-
-phase extraction according to literature [Medina-Remon
et al., 2009], with the difference that the solid-phase extrac-
tion was carried out through Oaxis MAX Cartridge Waters
containing the same stationary phase as micro titer 96-well
plate cartridges. Briefly, I mL of acidified urine was applied to
an activated Waters Oasis MAX cartridge. The cartridge was
rinsed with 4 mL of sodium acetate 50 mM pH 7/5% metha-
nol. The phenolics were eluted with 1.8 mL of 2% (v/v) for-
mic acid in methanol. Then, 30 uL of the eluted fractions
were mixed with 340 uL of deionized water adding 25 uL

TABLE 1. Composition of the meal (M) received by the participants. The meal with edible flowers (EFM) was the same with the addition of 17 g

of rose petals.

Meal Ingredient Quantity (g) Proteins (g) Lipids (g) Carbohydrates (g) Fiber (g) Total kcal
Noodles 80 73 1.7 39.5 1.81
Courgettes 60 0.81 0 0.87 0.87
Vegetable noodles Carrots 50 0.55 0 3.8 1.55
Ricotta 40 3.5 4.37 1.4 0
Olive oil 10 0 10 0 0
Cod 100 17 0.3 0 0
Baked fish fillet Natural yogurt 50 1.9 1.95 2.15 0
with yogurt sauce Cucumbers 15 0.1 0 03 0.11
Olive oil 5 0 5 0 0
Intake (per capita) 30 23 48 4.34 520
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of the Folin-Ciocalteu reagent and 60 uL of sodium carbon-
ate (200 g/L). The mixture was incubated for 1 h at room
temperature in the dark. Later, 145 uL of deionized water was
added. Absorbance was measured at 765 nm. Results were
expressed as mg gallic acid equivalent per liter (mg/L) and per
day (mg/day).

Statistical analyses

Flowers’ variables and human data were reported as
means + standard deviations. For each rose’s phytochemical
parameter, differences between the three samples were ana-
lyzed by non-parametric analysis of variance using Kruskal-
-Wallis test, with stepwise comparison, and by Spearman’s
correlation analyses. Between-group differences in urinary
phenolic excretion were analyzed by Kruskal-Wallis test. Anal-
yses were performed using SPSS 24.0 Inc. software (SPSS
Inc., Chicago, IL, USA). Crude and adjusted linear regres-
sion models were used to examine the urinary phenolic excre-
tion (dependent variable) in relation to each compositional
characteristics and antioxidant activity of edible rose flowers:
(a) the flower total phenolic, (b) the total anthocyanin con-
tents, and (c) the antioxidant activity. A multiple regression
model adjusted for age, sex, BMI, and dietary phenolic intake
was estimated for each phytochemical characteristic (a, b, c).
These analyses were done with Statistica software (ver. 7.0;
StatSoft Inc., Tulsa, OK, USA).

RESULTS AND DISCUSSION

Bioactive compounds in rose petals

The content of phenolics and anthocyanins in rose pet-
als and their antioxidant activity are reported in
The total phenolic content (6.53, 8.01, and 11.71 g GAE/kg)
and the FRAP (298.23, 407.41, 564.77 mmol Fe’*/kg) sig-
nificantly differed in each sample, increasing from the first to
the third week of EF supply. Similarly, anthocyanin content
(0.86-1.36 g C3G/kg), DPPH" (26.67-45.58 mmol TE/kg),
and ABTS* (9.49-14.12 mmol TE/kg) scavenging activities
were higher in the third sample. All the evaluated parameters
of EF were positively highly correlated with each other (p val-
ues were always lower than 0.01), as reported in

Rosa is an extremely wide and complex genus of plant
and comprises more than 150 species and 30,000 cultivars
[Smulders et al., 2019]. Some of them have already been stud-
ied as edible flowers and source of bioactive compounds (e.g.
Rosa x hybrida, Rosa X odorata, Rosa centifolia, Rosa chinen-
sis, Rosa gallica, Rosa micrantha, Rosa damascena, Rosa bour-
boniana, Rosa brunonii, and Rosa rugosa), and results showed
a wide variability according to the species [Chen et al., 2018;
Guimaraes et al., 2010; Kumar ef al., 2009; Li et al., 2014;
Lu et al., 2016; Mohsen et al., 2020; Rop ef al., 2012; Zhang
et al., 2014; Zheng et al., 2018]. Different analytical assays

TABLE 2. Total phenolic and total anthocyanin contents, and antioxidant activity measured as ferric reducing antioxidant power (FRAP) and as
DPPH" and ABTS"* scavenging activities of edible roses (Gourmet Roses™) supplied in the first, second, and third week of June 2019.

Total polyphenol Total anthocyanin DPPH" ABTS"+
FRAP . . . .

Rose supply content content (mmol Fe*/kg) scavenging activity scavenging activity

(g GAE/kg) (g C3G/kg) g (mmol TE/kg) (mmol TE/kg)
n.1 6.53+0.70° 0.86+0.09 298.23£35.75¢ 26.67=1.47° 9.49+1.92%
n.2 8.01x0.19° 0.97+0.02° 407.41x16.53° 28.36+2.62° 9.960.49"
n.3 11.71x0.40° 1.36=0.08" 564.77+6.45 45.58+0.822 14.12x0.17*
D 0.00003 0.0004 0.00002 0.00002 0.005

Results are expressed as mean of three replicates = standard deviation; different letters indicate significant differences in a column according to
Kruskal-Wallis stepwise comparisons (p<0.05). GAE - gallic acid equivalent; C3G - cyanidin 3-O-glucoside; TE - Trolox equivalent.

TABLE 3. Spearman’s correlation coefficients between total phenolic content, total anthocyanin content, and antioxidant activity measured as ferric
reducing antioxidant power (FRAP) and as DPPH" and ABTS"* scavenging activities of edible roses (Gourmet Roses™).

| FRAP | DPPH" scavenging activity | ABTS** scavenging activity | Total anthocyanin content

Correlation

fficient 0.983 0.850 0.803 0.833
Total phenolic content coctheien
p 0.000 0.004 0.009 0.005
Correlation
FRAP cocfficient 0.883 0.820 0.850
P 0.002 0.007 0.004
Correlation 0.887 0.800
DPPH" scavenging activity coefficient
p 0.001 0.010
Correlation 0.937
ABTS"* scavenging activity coefficient
p 0.000
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(e.g. FRAP, DPPH, and ABTS, or total phenolic content) are
necessary to evaluate the antioxidant activity of matrices. How-
ever, different extraction and analytical methods, and sample
preparation could make the comparison among different stud-
ies difficult [Santos-Buelga et al., 2012]. The range of total
phenolic content has been reported to vary from 5.00 to 24.00 g
GAE/kgin R. X hybrida and R. X odorata [Liet al., 2014; Rop
et al.,2012], while other authors [Chen et al., 2018] found 74 g
GAE/kg in pink R. rugosa (on dry weight). Twelve rose cultivars
are reported to have a total anthocyanin content ranging from
0t02.50 g C3G/kg [Friedman et al., 2010]. In four rose species
[Zheng et al., 2018], ranges of 360-3620 mmol Fe’*/kg were
recorded with FRAP, and 239-1037 mmol TE/kg with ABTS
assay. ABTS"* scavenging activities of 2-36 mmol TE/kg
and 653 mmol TE/kg were reported in fresh flowers of 12 rose
cultivars [Friedman ez al., 2010] and in dry flowers of R. rugosa
[Zhang et al., 2014], respectively. In turn, 101 mmol TE/kg
(by ABTS assay) and 451 mmol Fe**/kg (by FRAP) were
recorded in R. X hybrida petals [Li et al., 2014]. Our results
on Gourmet Roses™ petals are consistent with the above-
-mentioned ranges, except for the DPPH assay, which detected
lower values than those reported in literature (243-520 mmol
TE/kg) [Chen et al., 2018; Zheng et al., 2018].

The petals of roses harvested at one-week distance dur-
ing the month of July showed an increasing content over time
in bioactive compounds, namely total phenolics, and antho-
cyanins. Consequently, an increased antioxidant activity was
found. These parameters were positively correlated, confirm-
ing previous results on edible plants and wildflowers [De-
masi et al., 2021a; Li et al., 2014]. The secondary metabolite
content in roses varies among species and may be triggered
by various stimuli, which commonly occur because of sea-
sonal variations, or biotic and abiotic stresses. Similarly, also
the phenological stage and senescence of the plant could have
determined an increased production of antioxidants, such as
phenolic compounds, as a defense system that can lead to

increments both in the phenolic content and the biological
activity over time [Piccolella et al., 2018].

Urinary phenolic content

Twenty volunteers participated in the study (12 males,
8 females); their mean age and BMI were 41.2+10.8 years
and 22.6=3.2 kg/m?, respectively. Their usual mean pheno-
lic dietary intake was 931.3+219.1 mg/day. The 24-h before
each experiment, the mean phenolic dietary intake was lower
(784.5=230.4 mg/day) in line with the given dietary recom-
mendations for those days. Diet adherence was evaluated
by 1-day food record and telephone interview the day before
each experiment and resulted to be adequate. Out of them,
2 volunteers (1 male and 1 female, both receiving the third
EF sample) did not perform a correct 24-h urine collection.
Therefore, the urine samples of 18 subjects were analyzed.
No adverse effects related to the EF assumption were report-
ed by participants.

The differences in urinary phenolic excretion (expressed
as mg/L or mg/day) between the participant consuming
EFM and M were -1.8x11.4, 7.0=14.6, 59.1x94.6 mg/L
(p=0.15 according to Kruskal-Wallis) and -4.5+20.2,
6.8x10.9, 72.7=124.1 mg/day (p=0.15), respectively from
the first, second, and third supply of roses. The associations
between the urinary human phenolic excretion (dependent
variable) and the EF characteristics, namely total phenolic
and total anthocyanin content, and antioxidant activity are
shown in . Direct significant associations were found
with all the EF characteristics in both crude and adjusted mod-
els, in which four variables potentially impacting the intake or
excretion of phenolics (age, gender, body mass index, and di-
etary phenolic intake) were considered. It is reassuring that
the associations remain statistically significant in the adjusted
model, despite the small size of the sample (20 participants).
This might suggest a potential influence of the rose character-
istics on the human absorption of the rose phenolic content.

TABLE 4. Parameters of a regression model for relationships between differences in 24-h urinary phenolic excretion of participants consuming meal
with and without edible flower, and the roses (Gourmet Roses™) characteristics.

Characteristics Model B, SE, P, B, SE, P,
Total phenolic content Crude 0.11 0.048 0.031 0.15 0.063 0.032
(g GAE/kg) Adjusted? 0.16 0.063 0.030 0.19 0.084 0.044
Total anthocyanin content Crude 121 0.50 0.027 1.58 0.65 0.027
(g C3G/kg) Adjusted 1.65 0.65 0.026 2.03 0.86 0.035
Ferric reducing Crude 0.20 0.09 0.046 0.26 0.12 0.049
antioxidant power

(mmol Fe2*/kg) Adjusted 0.28 0.12 0.047 0.32 0.17 0.07
DPPH- scavenging activity Crude 3.10 124 0.024 4,09 1.62 0.022
(mmol TE/kg) Adjusted 427 1.64 0.023 5.40 212 0.026
ABTS scavenging activity Crude 12.85 5.15 0.024 16.90 6.0 0.023
(mmol TE/kg) Adjusted 17.67 6.78 0.023 22,24 8.79 0.026

“adjusted — multiple regression model adjusted for age, gender, body mass index, and dietary polyphenol intake. B,, ES , p, — parameters for urinary
phenolic excretion expressed in mg/L; B,, ES,, p, — parameters for urinary phenolic excretion expressed in mg/day. f - regression coefficient; SE - stan-
dard error; GAE - gallic acid equivalent; C3G - cyanidin 3-O-glucoside; TE — Trolox equivalent.
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Polyphenols bioavailability varies widely among different
classes of phenolics and they can be absorbed and metabolized
differently according to their chemical structure [Teng & Chen,
2019]. Briefly, part of them are absorbed by the small intes-
tine, while part are metabolized by microbiota. The metabolites
reach the liver to be absorbed by tissues and cells or the kid-
neys, to be ultimately excreted through urine. Phenolic intake
from food has been therefore associated with human total
urinary phenolic excretion [Nielsen ef al., 2002; Mennen et al.,
2006; Pérez-Jiménez et al., 2010a; Roura et al., 2006; Spencer
et al., 2008; Zamora-Ros et al., 2011]. A systematic review has
suggested that urinary phenolics might be considered as an
indicator of phenolic intake [Pérez-Jiménez et al., 2010a]. An
increased consumption of phenolic compounds with diet has
been reported to reduce cardiovascular risk factors [Guo et al.,
2016; Medina-Remon et al., 2017], the incidence of type 2
diabetes mellitus [Wedick er al., 2012], cardiovascular events,
and all-cause mortality [Agudo et al., 2007; Alonso et al., 2004;
Covas et al., 2001; Grassi et al., 2005; Manach et al., 2005;
Tresserra-Rimbau ef al., 2014a,b], and to decrease blood con-
centrations of inflammatory biomarkers [Medina-Remén ez al.,
2017]. The beneficial effects of dietary polyphenols may also
be due to a bi-directional relationship with the gut microbiota:
polyphenols can favorably affect the gut microbiota compo-
sition, and the gut microflora could metabolize polyphenols
into beneficial bioactive compounds, such as chlorogenic
acid and the derived compounds [Fraga et al., 2019; Liu et al.,
2020a; Ozdal et al., 2016; Tomas-Barberan et al., 2014].

At present, only in vitro and animal studies evaluated
the effects of EF phenolics. The anti-inflammatory property
of extract of R. canina, tested on the carrageenin-induced
rat paw edema assay, was demonstrated by the inhibition
of carrageenin-induced edema, similarly to the effect of in-
domethacin [Lattanzio et al., 2011]. Flower compounds have
been reported both to induce cell apoptosis via the p53 signal-
ling and p38 MAPK/FasL (mitogen-activated protein kinase-
-FAS ligand) cascade pathways [Lin ef al., 2005; Lo et al.,
2007] and to ameliorate the ROS-mediated mitochondrial
dysfunction pathway [Hou et al., 2005; Lin et al., 2005; Lo
et al., 2007]. Hibiscus acid from Hibiscus sabdariffa (roselle)
and (+)-epimagnolin A and (+)-magnolin from Magnolia
denudata induced weight loss in animals and in in vitro ex-
periments, by acting on fat metabolism-related enzymes,
down-regulating adipocyte differentiation via the modulation
of the PI3K (phosphoinositide 3-kinase) and MAP-kinase
pathways and inhibiting a-amylase activity and sugar/starch
absorption [Hansawasdi et al., 2001; Kim ef al., 2007; Kong
et al., 2011; Preuss et al., 2007]. Similarly, the methanol ex-
tract of Nymphaeaceae inhibited the lipid storage in adipo-
cytes by promoting lipolysis [Hansawasdi er al., 2001; Lee
et al., 2010; Kong et al., 2011; Velusami et al., 2013]. Rosa
spp. are very rich in quercetin, which has been shown to in-
hibit both a-glucosidase and a-amylase, thus reducing the in-
testinal absorption of glucose [Lu et al., 2016; Oboh et al.,
2015]. However, different EF showed great variability in their
phenolic composition and bio-accessibility through an in vi-
tro digestion model coupled to a simulated intestinal barrier
[de Morais et al., 2020]. Thus, in vivo and human studies are
needed to define the potential role of EF on human health.

This is the first human study analyzing the relationship
between the dietary content of phenolics from EF and the uri-
nary phenolic excretion in healthy volunteers. According to
the multiple regression analysis, we found a direct relationship
between the increasing rose phenolic content and the phe-
nolic excretion, meaning that phenolics have been absorbed
and metabolized by the body [Pérez-Jiménez et al., 2010a].

CONCLUSIONS

The preliminary data of this pilot explorative study suggest
the importance of carrying out further human trials to char-
acterize the absorption of the phenolics contained in the EF
and their impact on the human oxidative status. Indeed, edible
roses were confirmed as a rich source of bioactive compounds
(total phenolics and total anthocyanins) with high antioxidant
activity, and the increasing values of these parameters in flow-
ers corresponded to an increase of the urinary phenolic ex-
cretion in healthy volunteers. Interestingly, the amount of EF
used in the recipes (17 g) provided an amount of phenolics
(111-199 mg GAE) proper to fill the gap between the dietary
recommendations during the trial (784 mg/day) and the usual
mean dietary intake of the participants (931 mg/day), suggest-
ing that no other supplemented phenolics are required to meet
their needs. Though, we cannot exclude the possibility that an
absorption plateau could be reached at a specific threshold
of phenolic intake by EF supplementation. In order to reduce
the risk of bias, the conditions were standardized as much as
possible before and during the human experiment and the par-
ticipants reported an adequate compliance to the given dietary
recommendations. Even though for the purposes of a pilot
study any sample size from 12 upwards has been considered
adequate [Julious, 2005], a larger sample of participants will
be needed for future studies to specifically test a dose-response
relationship [Shader, 2015]. Moreover, the evaluation, besides
urine, also of blood markers of oxidative stress, inflammation,
kidney and liver function would be of interest to define the ef-
ficiency of phenolics absorption and the potential benefits
and safety of adding specific EF in daily diet.
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