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Colocasia esculenta (Taro) is an edible tuberous plant; however, corms are its most worldwide consumed part while the corm powder is widely used
in food industries. In this work, a sulphated polysaccharide extract of C. esculenta corm (SCE) was prepared and its cancer chemopreventive properties
were explored. The amending of carcinogen metabolism and radical scavenging affinity revealed that SCE is a strong tumor anti-initiation agent via sup-
pressing cytochrome P450-1A and enhancing glutathione and the carcinogen detoxification enzyme; glutathione S-transferase. SCE exhibited a strong
scavenging affinity towards critical radicals (hydroxyl and peroxyl). It induced lymphocyte growth and modulated the macrophage functions into an
anti-inflammatory profile, via elevating macrophage proliferation and its binding affinity of fluorescein isothiocyanate-lipopolysaccharide (FITC-LPS)
and inhibiting nitric oxide and tumor necrosis factor-o generation. Furthermore, SCE showed a potent cytotoxicity against human breast MCF-7 carci-
noma cells (IC,; 27.73 ug/mL), whereas SCE treatment inhibited the activity of histone deacetylase (HDAC IC, 37.70 ug/mL) and disturbed the pattern
of cell cycle phases. An arrest in both S- and G2/M-phases was linked with shifted cell populations towards late apoptosis and necrosis, as detected
by flow cytometry. SCE is a promising cancer chemopreventive agent to be used in healthy food industries and for the high breast cancer-risk population.

INTRODUCTION

Colocasia esculenta (Liliatae, Araceae), traditionally
called taro, is a tuberous plant classified as monocotyledon-
ous and distributed in humid subtropics and tropics. All
of the plant parts are edible; however, corms are its most
worldwide consumed part [Lim, 2015]. The corms afford
various nutrients, including proteins, carbohydrates, vitamins
(niacin, riboflavin, and thiamine), minerals (iron, potassium,
sodium, calcium, and phosphorus) and fibers [Temesgen &
Retta, 2015]. Additionally, many bioactive compounds were
extracted from C. esculenta; e.g., phenolic compounds (in-
cluding anthocyanins and tannins), sterols, organic acids,
bioactive proteins, phytocystatin, alkaloids, terpenes, and sa-
ponins [Ferreres et al., 2012; Lim, 2015; Reyad-ul-Ferdous
et al., 2015]. Preclinical studies reported that C. esculenta
corm extracts exerted antitumoral and antimetastatic [Kundu
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et al., 2012; Park et al., 2013], antihyperlipidemic [Sakano
et al., 2005], antioxidant [Lee et al., 2011], wound healing
[Gongalves et al., 2013], antidiabetic [Eleazu ef al., 2013],
and antiviral [Keyaerts et al., 2007] properties.

The widespread traditional usages of C. esculenta are for
many health disorders including: gastrointestinal diseases, di-
abetes mellitus, alopecia, internal hemorrhages, anemia, body
ache, snakebite, and additionally for immune system stimu-
lation [Lim, 2015, Nwauzoma & Dappa, 2013]. C. esculenta
corm powder is marketed as an ingredient and as a food sup-
plement, worldwide. The flour constituents of C. esculenta are
comparable to corn, potato, and soybean ones; it has a high
fiber a low fat content, which makes the flour a satisfactory
substitute for market flours as an economic alternative in de-
veloping countries [reviewed in Pereira ef al., 2018]. C. escu-
lenta flour may be utilized in numerous preparations, such
as bread, noodle, cookies, paste, and infant formulations,
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especially for dietary restriction cases (e.g., gluten intoler-
ance and allergenic disorders) [Kaushal ez al., 2015; Noorfar-
ahzilah et al., 2014].

The defensive mechanisms that provide prevention
of the carcinogenesis cascade are defined as chemoprevention
perception. Chemopreventive agents are capable to prevent,
reverse or postpone carcinogenesis cascade. Daily consump-
tion of these agents represents a hopeful approach to suppress
or prevent carcinogenesis [Mollakhalili ez a/., 2017]. A variety
of phytochemicals originated from dietary plants are proved
to hinder specific carcinogenesis stages through the inhibi-
tion of tumor initiation, promotion, and progression, which
among others, encompassed the modulation of the cancer
cell cycle, proliferation inhibition, and initiation of apoptosis
[Mollakhalili e al., 2017].

In our previous studies, we reported that the sulphated
forms of natural polysaccharides showed promising tumor
cancer chemopreventive potentials [Gamal-Eldeen et al.,
2006; 2007a,b 2009; 2021]. In continuation, the current
study was planned to explore the cancer chemopreventive
mechanisms of a sulphated extract of C. esculenta corms,
targeting to function as a cancer chemopreventive alternative
in the healthy food industries for high-risk populations.

MATERIAL AND METHODS

Preparation of the sulphated C. esculenta extract

C. esculenta tubers (2 kg) were purchased from the local
market (Dokki, Giza). Corms were washed and cleaned from
the foreign substances, peeled, and chopped into smaller
pieces (~1 cm?). Afterward, the pieces were macerated with
distilled water in a kitchen blender, and then extracted for 1 h
with hot water under reflux. A filtration was carried out to
discard insoluble material, and the filtrate was dialyzed for
48 h against running distilled water, prior overnight incuba-
tion with cold ethanol (1:4; v/v). The precipitate was gathered
by centrifugation before vacuum drying (crude polysaccha-
rides). Sulphated C. esculenta extract (SCE) was prepared
rendering to published methods [Méhner et al., 2001; Yang
et al., 2003]. In brief, the sulphating agent was developed
by dropping 20 mL of fuming sulphuric acid into 100 mL
of formamide, in a cooling chamber. The crude polysaccha-
rides (4 g) were mixed with formamide and then mixed with
the sulphation solution (120 mL) under overnight stirring.
After cooling, consecutive steps were carried out including
neutralization by 1 N NaOH, dialysis against distilled water
for 48 h, and finally lyophilization. All of the chemicals were
purchased from Sigma-Aldrich (Saint Louis, MO, USA), un-
less otherwise mentioned.

Characterization of the sulphated C. esculenta extract
The total carbohydrate content of SCE was estimated
by the phenol-H,SO, protocol [DuBois et al., 1956]. The total
protein was determined with the Lowry method [Lowry et al.,
1951]. The sugar composition was estimated after a complete
hydrolysis of polysaccharides with H,SO, (2 M) at 100°C
for 8 h. The hydrolysate was neutralized by BaCO, and then
Dowex 50 resin (H* form) was used. The chromatography for
24 h on Whatmann no. 1 paper with butanol: acetone: water

(4:5:1, v/v/v) as a mobile phase was applied to separate
the individual sugars [Partridge et al., 1949]. The spots were
sprayed with aniline phthalate for visualization. The total
sulphate content was determined after hydrolysis with HCI
[Larsen et al., 1966] and the liberated sulphate ions were esti-
mated by BaCl, turbidimetric method [Hunt, 1980].

Cell culture

Various cell lines were utilized through the study, includ-
ing human breast carcinoma (MCF-7), human hepatocellular
carcinoma (Hep G2), human lymphoblastic leukemia (1301)
and raw murine macrophages (RAW 264.7); purchased from
the American Type Culture Collections (ATCC, Manassas,
VA, USA). RAW 264.7 cells were cultured in Roswell Park Me-
morial Institute Medium-1640 (RPMI-1640), while the other
cell lines were routinely cultured in Dulbecco’s Modified Eagle
Medium (DMEM). Media were supplemented with 10% fetal
bovine serum (FBS), 2 mM L-glutamine, 100 U/mL strepto-
mycin sulfate, 100 U/mL penicillin G sodium, and 250 ng/mL
amphotericin B. Cells were maintained in humidified air con-
taining 5% CO, at 37°C. Extracts were dissolved in the cell
matching medium. The extract stocks were examined, before
assay dilutions, for endotoxins by the Pyrogent® Ultra gel clot
assay to confirm endotoxin-free status. Materials for cell cul-
ture were purchased from Lonza (Morristown, NJ, USA). All
of the cellular experiments were repeated (n=38), except flow
cytometry analysis (n=4).

Tumor anti-initiation activity

The total cellular capacity for scavenging the physi-
ologically dangerous radicals; peroxyl (ROO") and hydroxyl
(OH"); was investigated by the oxygen radical absorbance
capacity (ORAC) assay, which is an indication of the total
antioxidant activity of the cells [Cao & Prior, 1999; Gamal-
-Eldeen et al., 2004]. Hep-G2 cells were treated with 10 ug/mL
of SCE for 24 h. The protein content of the cell lysate was
measured and only 1 ug protein/mL was subjected to ORAC
assay. B-Naphthoflavone-treated Hep-G2 cells were used as
cytochrome P450 1A1 (CYP1AL1 ) source, which was further
treated with SCE (1 ug/mL), and then CYP1A1 was assessed
by the dealkylation rate of 3-cyano-7-ethoxycoumarin into
3-cyano-7-hydroxycoumarin [Crespi et al., 1997; Gerhauser,
etal.,2003]. Glutathione S-transferase (GST) activity was es-
timated in 1x10° Hep G2 cells after being incubated with SCE
(10 and 20 ug/mL) for 48 h [Habig et al., 1974]. The kinetic
analysis was traced at 340 nm, and then GST concentration
was normalized to the protein content. The total thiol content
was estimated by an enzymatic method [Griffith, 1980].

Tumor anti-promoting activity and macrophage functions

To select a safe dose, the macrophage proliferation index
was calculated for RAW 264.7 cells (0.5x 10° cells/well) after
being seeded with SCE (0-40 pg/mL) for 48 h. Cell viabil-
ity was assessed by MTT test. RAW 264.7 cells were cultured
in phenol red-free RPMI, to estimate both of the secreted tu-
mor necrosis factor-a (TNF-a) by ELISA kit (R&D Systems,
Minneapolis, MN) and the generated nitric oxide (NO), as
assayed by Griess reagent in Moorcroft et al. [2001]. Mac-
rophages were treated with bacterial lipopolysaccharide
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(LPS, 1 ug/mL) for 24 h and with/without SCE (10 ug/mL
and 20 pg/mL). Additionally, the SCE influence on the bind-
ing affinity of FITC-conjugated LPS to macrophages was
evaluated [Carracedo er al., 2002]. Cells were seeded with
SCE (10 and 20 pg/mL) in phenol red-free RPMI with 10%
FBS (source of CD14 and LPS-binding protein), then incu-
bated for 1 h, and the FITC-LPS binding affinity was detected
via microplate fluorometer (FluoStarOptima, BMG, USA).

Tumor anti-progression effect

Cytotoxicity of SCE against human cancer cells was eval-
uated by the 3-[4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
-tetrazolium bromide (MTT) assay after 48 h after the treat-
ment of 0.5x10° cells/well with SCE (0-40 ug/mL) for 48 h.
Thereafter, the media were discarded and 40 uLL MTT solu-
tion/well were added and incubated for 4 h. MTT crystals
were solubilized by acidified isopropanol [Hansen, et al.,
1989]. Photometric readings were recorded at 570nm using
a microplate ELISA reader. The analysis of cell cycle phases
in 5x10° MCF-7 cells/mL after being treated with SCE (IC,))
for 12 h was carried out by flow cytometry after cell staining
with propidium iodide (PI), using a flow cytometer (Becton
Dickinson, San Jose, CA, USA). The PI/FITC-anti-Annexin
V Kit (Invitrogen, Waltham, MA, USA) was used to estimate
apoptosis/necrosis by flow cytometry. MCF-7 cells were
treated with SCE (0-40 ug/mL) for 48 h, and then the activ-
ity of histone deacetylase (HDAC) was measured in the cell
lysate by a colorimetric kit (BioVision, Milpitas, CA, USA)
according to the manufacturer’s instructions.

Data analysis

Data were statistically analyzed by Student’s unpaired
t-test and one-way ANOVA test. The differences between
mean values were considered insignificant at p>0.05.

RESULTS AND DISCUSSION

Halting, suppressing, retarding or reversing the sequence
of carcinogenesis stages is regularly called “cancer chemo-
prevention”, which is mostly achieved via using natural semi-
-natural, or synthetic chemicals to neutralize carcinogens
[Tan et al., 2011]. Plant extracts are known to possess wide-
range mechanistic chemopreventive activity, through block-
ing the enzymatic carcinogen-activation process in tumor
initiation stage or inhibiting the growth of the pre-neoplastic
and neoplastic cells [Tan et al., 2011]. The current study
is an attempt to recognize whether SCE acts as a blocking or
a suppressing agent.

Characterization of sulphated C. esculenta extract

The analysis of the chemical composition of SCE revealed
that after the sulphation process, the sulphate substitution
in SCE was 48% with a sulphation degree of 2.3 (molar ratio
to monosaccharide unit) ( ) that indicated the accom-
plishment of the sulphation reaction. Chromatography analy-
sis of SCE acid hydrolysates revealed the occurrence of a sig-
nificant amount of glucose, and smaller amounts of mannose,
galactose and uronic acids, as well as traces of arabinose, Xy-
lose, and rhamnose ( ).

Tumor anti-initiation activity

In oxidative stress status and inflammatory condition,
extreme generation of reactive oxygen (ROS) and nitrogen
(RNS) species occurs and causes DNA damage that ignites
tumor initiation and promotion cascade [Sun et al., 2004]. Ac-
cordingly, eliminating the excess of physiologically-pertinent
ROS, such as ROO" and OH", affords an effective approach
to halt tumor initiation and promotion. Likewise, the aug-
mentation of the non-enzymatic antioxidants; total thiols,
supports the attenuation of ROS harmful effect. The total cell
lysate capacity for scavenging the radicals; OH* and ROO";
was assessed by ORAC assay in HepG2 cells. The results in-
dicated that SCE remarkably enhanced the total cellular ca-
pacity to scavenge both radicals ( ). However, the af-
finity to scavenge OH" was higher than ROO", as concluded
from their ORAC units in comparison with Trolox, where one
ORAC unit is equivalent to the protection of the fluorescence
decay of a-phycoerythrin (a-PE) achieved by Trolox (1.0 uM).

To antagonize xenobiotics and toxic agents, cells emerged
a panel of responding genetic amendments that help them
to repress the damaging effect of toxicants. Those amend-
ments include upregulation of drug-metabolizing enzymes,
cytoprotective proteins, and drug transporters, that facilitate
clearance of toxicants from the body and restore normal ho-
meostasis. Nuclear factor-erythroid 2-related factor 2 (Nrf2)
as well as aryl hydrocarbon receptor (AhR) are transcription
factors that mediate the enzymatic response towards xenobi-
otics [Hayes et al., 2009]. Among others, transcription fac-
tor AhR regulates CYP1A1 expression, which is triggered
by its conjugation with polycyclic aromatic hydrocarbons.
The metabolizing of exogenous and endogenous substrates
is regulated by monooxygenase, which is primarily encoded
by CYPIAl gene. CYPIAL is a pivotal player in the me-
tabolism of benzo[a]pirene and linked polycyclic aromatic
hydrocarbons, transferring both into strongly dangerous car-
cinogens. Accordingly, the enhanced expression of CYP1Al

TABLE 1. Chemical composition of a sulphated water-soluble extract
of C. esculenta (SCE).

Chemical composition Value
Carbohydrate (g/100 g) 354
Protein (g/100 g ) 0.8
Sulphate (g/100 g ) 48.0
Degree of sulphation 23
Relative monosaccharide contents (g/100 g )

Uronic acid 1.15
Galactose 4.0
Glucose 83.5
Mannose 11.0
Arabinose Traces
Xylose Traces
Rhamnose Traces
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FIGURE 1. Tumor anti-initiating activity: (a) Oxygen radical absorbance capacity (ORAC) was used to investigate the radical scavenging (antioxidant)
activity against OH* and ROO" in Hep-G2 cell lysate after being treated with a sulphated C. esculenta extract (SCE) in comparison with control cells.
Data are expressed in ORAC units. (b) The modulation of the carcinogen metabolism: The effect of SCE (10 and 20 ug/mL) on the purified cyto-
chrome P450 1A1 (CYP1AI; 1 ug protein/mL) and the cellular levels of glutathione S-transferase (GST) and total thiol content in Hep-G2 cells was
investigated. Data was expressed as mean percentage = standard error and control represents 100% of the scale. In control cells, GST and total thiol
contents were 118 nmol/min/mg protein and 84 nmol/min/mg protein, respectively. *p<0.05 and *p<0.01.

gene is an indicator for AHR stimulation and is associated
with the metabolism and toxicity of xenobiotics [Mescher &
Haarmann-Stemmann, 2018]. Therefore, CYP1AL is consid-
ered as a potential molecular target to modulate and prevent
chemically-induced carcinogenesis.

Alteration of different enzymes that participate in the
metabolic activation of carcinogens (phase I enzymes)
and in the detoxification of carcinogens (phase II enzymes),
is an effective strategy for recognizing cancer anti-tumor ini-
tiation agents. The estimation of the inhibitory effect of SCE
on CYPIAI enzyme, as one of the phase I-enzymes partici-
pating in the transformation of procarcinogens into active
carcinogens, revealed that SCE (10 pg/mL and 20 ug/mL)
can be recognized as a strong inhibitor of CYP1AI activ-
ity (p<0.01) with inhibition of 57% and 64%, respectively
( ), in comparison to control.

In carcinogenesis, the initiation is the very early and cru-
cial event, where it functionally promotes the clonal cell
growth under the control of promoters and ends eventually
with consequent preneoplastic cell generations [Bertram,
2000]. Retarding or stopping the initiation stage through
suppressing the activators of carcinogen metabolism (e.g.,
CYP1A), enhancing the carcinogen detoxification (e.g., glu-
tathione (GSH) and GSTs), and increasing cellular antioxi-
dant activity are efficient operative strategies. A fundamental
indicator of the cellular defense against the oxidative stress
is the total thiol level, especially GSH, the key cytosolic thi-
ol, that supports the elimination of peroxides and other free
radicals [Aggarwal & Shishodia, 2006]. GSH homeostasis
depends on its binding to GSTs, which is a panel of enzymes
that regulates xenobiotic detoxification and defends the cells
against carcinogens. GSTs generally amend the cellular
GSH levels according to the ROS generation level [Prabhu
& Guruvayoorappan, 2010]. In Hep-G2 cells, GST was ex-
plored (as one of phase IT enzymes) after 48 h of cell seed-
ing with SCE (10 pg/mL). Its activity was elevated up to
162.47% of the control (p<0.05), as shown in
while it remained unaffected by the higher SCE. The assess-
ment of the total thiol level indicated that SCE dramatically

increased the thiol content in cells in both of the tested doses
( ).

Our results revealed that SCE is an effective tumor anti-ini-
tiating agent, since it dramatically suppressed CYP1A activity.
Cellular antioxidants guard the cells from the harm of dan-
gerous physiological radicals, such as hydroxyl and peroxyl
radicals, that can attack critical protein and DNA molecules.
The cellular antioxidants maintain the homeostatic balance
of cellular ROS [Bertram, 2000], whenever this balance is im-
paired, it directly disturbs cellular growth, apoptosis, and se-
nescence. Our findings indicated that SCE strongly increased
the total cellular scavenging activity, as estimated in the cell
lysate of SCE-treated Hep-G2 cells, against OH® and ROO",
with higher affinity towards OH*, compared with the scaveng-
ing activity of cell lysate of untreated cells.

Tumor anti-promoting activity and modulation of
macrophage function

As a key player in innate and adaptive immune respons-
es, macrophages are regularly engulfing and then digesting
pathogens via discharging mediators of inflammation includ-
ing NO that is a potential RNS that in turn transforms into
many oxidation products which are capable to trigger the car-
cinogenesis initiation and promotion [Prabhu & Guruvay-
oorappan, 2010]. The strong affinity of SCE to scavenge vari-
able radicals including its suppressing of the LPS-induced
NO may indicate that the suppression was because of a direct
NO scavenging or via inhibiting iNOS pathway. The macro-
phage growth induced after SCE treatment may be associated
with an elevation in the expression of the macrophage growth
factor; IL-12. The outer membrane of Gram-negative bacte-
ria enclosed LPS that is an essential molecule in septic shock
pathogenesis.

LPS regularly conjugates the serum acute-phase reactant
LPS-binding protein (LBP) that transports LPS to CD14
(a primary LPS receptor in serum) and as a glycophospha-
tidylinositol-linked agent on mononuclear phagocytes sur-
face. LPS-CD14 activates the generation of the inflamma-
tory cytokines [Kitchens, 2000]. Subsequently, the effective
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FIGURE 2. Modulation of macrophage function: (a) Macrophage proliferation index (folds of control) in sulphated C. esculenta extract (SCE) treated
Raw 264.7 cells. (b) Nitric oxide (NO) production (umol/mg protein). (¢c) Tumor necrosis factor (TNF-a) concentration (ng/mg protein) were esti-
mated in the supernatants of Raw 264.7 after being stimulated by bacterial lipopolysaccharide (LPS) before being treated with/without 10 & 20 ug/mL
SCE. (d) Analysis of fluorescein isothiocyanate-LPS (FITC-LPS) binding affinity to Raw 264.7 cells by flow cytometry. Data was expressed as mean
percentage = standard error. ®p<0.05 and *p<0.01; “compared to control macrophages and *compared to LPS-treated macrophages.

enhancement of the macrophages/LPS binding affinity
by SCE may ultimately result in enhanced LPS-LBP conju-
gation and/or LPS-CD14 conjugation. C. esculenta extract
treatment for Her-2/neu negative murine mammary tumor
cell line (410.4) showed antimetastatic activity, which sug-
gested to be due to its inhibition of the inflammatory media-
tors including the suppression of prostaglandin E, (PGE,)
synthesis and downregulation of cyclooxygenase (COX)
1 and 2 expressions [Kundu ez al., 2012].

The influence of SCE on the macrophage proliferation
and its functionality was explored. The results demonstrated
that SCE displayed a gradual dose-dependent immunoprolif-
erative outcome on macrophages ( ) to the highest
level of 2.51-fold of control at 20 ug/mL (p<0.05), but not
in the highest dose used. This high macrophage proliferation
led to the interest of further investigations to check if this pro-
liferation was concurrently accompanied with elevated mac-
rophage functions. Bacterial LPS was used to induce inflam-
mation cascade in the RAW 264.7 cells before being further
treated with SCE. Interestingly, treating RAW 264.7 cells with
SCE (10 pg/mL and 20 ug/mL) resulted in a significant inhi-
bition (p<0.01) in the LPS-stimulated NO production, where
it inhibited 60.32% and 71.43% of the LPS-generated NO,
respectively ( ). While only the dose of 20 ug/mL

of SCE significantly inhibited (p<0.05) the TNF-a release
from LPS-treated macrophages ( ). The affinity
of macrophages to bind a tumor surface antigen or a patho-
gen is their essential mechanistic activation function. That
binding was traced after the seeding of macrophages with
FITC-LPS with/without SCE (10 pg/mL and 20 pg/mL).
The results revealed that both doses of SCE dramatically sup-
pressed (p<0.01) the macrophage binding affinity to FITC-
-LPS ( ).

Anti-progression activity

Exploring the cytotoxicity of SCE against solid tumor
cell lines showed a remarkable dose-dependent cytotoxicity
in breast MCF-7 cells (IC,; 27.73 ug/mL) and a lower cyto-
toxicity extent in the case of Hep-G2 cells (IC, 64.32 ug/mL),
as shown in . However, the treatment of the he-
matopoietic tumor cells (1301 leukemia) with SCE resulted
in a gradual increment in the lymphocyte proliferation, up to
1.5-fold at 40 ug/mL ( ).

Consequently, the effect of SCE on MCF-7 cell cycle
phases was investigated, whereas the untreated MCEF-7
cells exhibited an intact pattern of cell cycle stages, as
96.3% of the cell’s population appeared in GO/G1 phase
( ). SCE treatment resulted in a significant arrest
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population, while in (e) the flow cytometry dot plots for the cells are presented. (f) Histone deacetylase (HDAC) inhibition in SCE-treated MCF-7 cells.
Data were presented as mean percentage + standard error. *p<0.05 and *p<0.01.

(p<0.01) in S-phase (29.2%), and G2/M phase (20.1%)
and subsequently a concomitant significant decrease in cell
population in GO/G1 phase, as shown in . Due to
the noticed disturbance in cell cycle phases and SCE-induced
cytotoxicity in MCF-7 cells, the meanwhile cell death mode
stimulated by SCE was analyzed. The findings indicated that
SCE encourages necrosis as much as apoptosis ( ,

), as concluded from their total population percent-
ages (18.5%, and 16.1%, respectively), compared to the con-
trol pattern ( , .

Our results indicate the cytotoxicity of SCE against breast
carcinoma MCEF-7 cells and hepatocellular Hep-G2 carcinoma
but not with lymphoblastic leukemia, signifying the SCE speci-
ficity to solid tumor cells. Rendering the polysaccharides high
molecular weight, SCE IC,, of MCF-7 cells (27.73 ug/mL)
provides a dramatic low molar concentration of SCE. In a par-
allel previous report, C. esculenta extract was reported to simi-
larly reduce the proliferation of some breast as well as prostate
cancer cell lines [Kundu ez al., 2012]. Rounded cells with mor-
phologic alterations were recorded, where cell migration was
totally jammed by taro extract [Kundu ef al., 2012]. Cell death

may occur due to different death mechanisms, among them are
the necrosis and apoptosis that are characterized by variable
morphological and biochemical events, including cell swelling,
disruption, and rapid cell membrane fragmentation in necrosis
and elegant nuclear and cytoplasmic disintegration and forma-
tion of apoptotic bodies [Xu et al., 2019].

In the current study, SCE induced both necrosis and apop-
tosis in MCF-7 cells that was activated by a parallel disorder
in cell cycle phases; arrested cell population in S- and G2/M
phases. The rate of cell growth can interfere in the carcino-
genesis stages by multiple mechanisms; among them the cell
population per se may be carcinogenic through fixing of mis-
coding lesion in the freshly synthesized DNA [Lund, 2011].
Cells retort to cytotoxic stress and DNA impairment by ar-
resting cell-cycle phases, repairing DNA or enduring apoptot-
ic cell death. A wide array of cancer chemopreventive agents
displayed their antitumor activity in association with disturb-
ing cell cycle and arrested growth, with apoptosis [Tanaka
& Ishigamori, 2011]. Subsequently, the ability of SCE to in-
hibit S-phase in breast cell cycle may diminish the frequency
of DNA miscoding lesions. Anticancer therapeutics eliminate



A.M. Gamal-Eldeen et al.

399

cancer cells by targeted mechanisms including damaging cell
membrane, interactions with DNA, suppressing DNA replica-
tion, and attacking cells by free radicals.

Since HDAC is one of the apoptosis-regulating factors,
the acetylation of histone was estimated in the MCF-7 cell lysate
after being treated with different concentrations of SCE. The re-
sults revealed that SCE is a potent inhibitor of HDAC, in dose-
-dependent linear profile, whereas the half maximal inhibitory
concentration of SCE to HDAC (HDAC IC, ) was 37.7 ug/mL
( ). In the current study, the apoptosis was associat-
ed with a remarkable inhibition in HDAC (IC50 37.7 ug/mL).
It is known that the post-translational histone modification
“histone acetylation” is regulated by histone acetyltransferases
and HDAC:s. By eliminating the acetyl groups, HDACs oppo-
site the acetylation of chromatin and amend tumor suppressor
genes and oncogenes transcriptions [Li & Seto, 2016]. Inter-
estingly, HDACs deacetylate other non-histone substrates that
regulate a battery of biological pathways such as tumor initia-
tion and progression. The therapeutic approach of HDAC in-
hibitors (HDACI) is an emerging cancer treatment [Li & Seto,
2016]. Via hyperacetylation of histone/non-histone, HDACi
permit the restoration of cellular acetylation homeostasis
and re-establish the normal expression of proteins and inverse
the processes of tumor initiation and progression [Li &d Seto,
2016]. Accordingly, the strong inhibitory activity of SCE for
HDAC is one of the mechanisms of SCE as a potential tumor
anti-initiating agent.

CONCLUSION

Recently, due to their flexibility, cost-effectiveness, and desir-
able drug release and regulatory acceptance, many biotechno-
logical approaches have been focused on hydrophilic polymers
in pharmaceuticals. The current study findings propose SCE
as a promising candidate for food industries as a functional
and healthy food supplement and as an alternative of CE itself,
to offer a cancer chemopreventive properties and evoke anti-
-inflammatory activity in targeted breast cancer-high risk com-
munities. This study is an innovative trial to prepare a sulphated
water extract of C. esculenta. Taken together, SCE is a strong
tumor anti-initiation agent via suppressing cytochrome P450—
1A and enhancing the total thiol content and the carcinogen
detoxification enzyme (GST). SCE exhibited a strong scaveng-
ing affinity towards critical radicals (OH* and ROO"). Also,
it induced lymphocyte growth and modulated the macrophage
functions into an anti-inflammatory profile, via elevating mac-
rophage proliferation, its binding affinity of FITC-LPS and, to
different extent, its inhibition of NO and TNF-o generation. Fur-
thermore, it showed a potent cytotoxicity against MCF-7 cells,
disturbed cell cycle phases (S- and G2/M-phases), and en-
hanced late apoptosis and necrosis. SCE is a promising cancer
chemopreventive agent to be used in healthy food industries
and for the high breast cancer-risk population, an assumption
that needs to be validated in forthcoming in vivo studies.
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