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Azodicarbonamide (ADA) additives are limited or prohibited from being added to wheat flour by various countries because they may produce 
carcinogenic semicarbazide in humid and hot conditions. This study aimed to realize the non-destructive detection of ADA additives in wheat flour us-
ing high-throughput Raman imaging and establish a quantitative analysis model. Raman images of pure wheat flour, pure ADA, and wheat flour-ADA 
mixed samples were collected respectively, and the average Raman spectra of each sample were calculated. A partial least squares (PLS) model was 
established by using the linear combination spectra of pure wheat flour and pure ADA and the average Raman spectra of mixed samples. The regression 
coefficients of the PLS model were used to reconstruct the 3D Raman images of mixed samples into 2D grayscale images. Threshold segmentation 
was used to classify wheat flour pixels and ADA pixels in grayscale images, and a quantitative analysis model was established based on the number 
of ADA pixels. The results showed that the minimum detectable content of ADA in wheat flour was 100 mg/kg. There was a good linear relationship 
between the ADA content in the mixed sample and the number of pixels classified as ADA in the grayscale image in the range of 100 – 10,000 mg/kg, 
and the correlation coefficient was 0.9858. This study indicated that the combination of PLS regression coefficients with threshold segmentation had 
provided a non-destructive method for quantitative detection of ADA in Raman images of wheat flour-ADA mixed samples.
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INTRODUCTION

Wheat is  the  staple food for more than one-third 
of the world’s population. Flour is the main product of wheat 
processing, which is  often used to make steamed buns, 
noodles, bread, instant noodles, dumplings and other kinds 
of  food. The  wheat flour quality differs due to the  effects 
of wheat varieties, growth environment, storage and transpor-
tation, processing methods and other factors [Lancelot et al., 
2021; Liu et al., 2015; Lv et al., 2013]. To meet the market de-
mand for different wheat flour products, the company needs 
to add various types of additives in the course of processing. 
The use of additives is directly related to the wheat flour qual-
ity and people’s dietary safety.

As a  wheat flour quality improver, azodicarbonamide 
(ADA) is used to increase the strength and flexibility of dough 
and  has a  certain bleaching effect [Yasui et  al., 2016].  
ADA acts as an oxidizing agent when wheat flour is stirred into 
dough with water, and may be  transformed into semicarba-
zide after heat treatment [Becalski et al., 2004; Ye et al., 2011]. 
Some experiments have shown the potential carcinogenicity 

of  semicarbazide in  animals [Tian et  al., 2014]. Therefore, 
the international restrictions on the use of ADA vary. The Eu-
ropean Union, Australia, New Zealand, Singapore, and  Ja-
pan have all banned the use of ADA in food, but it can be used 
as a wheat flour additive in the United States, Brazil, Canada, 
and China at the maximum dose of 45 mg/kg [Chen et al., 
2018].

At present, the  conventional detection methods of  ADA 
in wheat flour are mainly high-performance liquid chroma-
tography (HPLC) [Li et al., 2015; Wei et al., 2017] and liq-
uid chromatography-mass spectrometry (LC-MS) [Noonan 
et al., 2005; Wang et al., 2014]. These two chromatographic 
methods can accurately detect the  ADA content in  wheat 
flour, and have the advantages of low detection limit, strong 
specificity, and high sensitivity. However, they require a series 
of  complex pretreatments, and  the  selection of  chromato-
graphic conditions, such as chromatography column, flow 
rate of  carrier gas, and  sample size, also needs to be  taken 
into account. The  entire operation process requires skilled 
operators and  has complicated, time- and  cost-consuming, 
and destructive procedures.
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As the  optoelectronic technology develops, some spec-
troscopy methods have been shown reliable in the detection 
of  wheat flour additives, such as fluorescence spectroscopy 
[Chen et al., 2011], Raman spectroscopy [Cebi et al., 2017], 
near-infrared spectroscopy [Che et  al., 2017; Gao et  al., 
2016], and terahertz spectroscopy [Hu et al., 2020; Sun et al., 
2019]. However, these spectral methods only obtain the infor-
mation of a single sampling point, which poses the problem 
of  sampling representativeness. In  addition, only the  spec-
tral signal of  the sample can be obtained, and  the distribu-
tion of  the  substance inside the  sample cannot be  known. 
High-throughput Raman imaging integrates the advantages 
of Raman spectroscopy and digital imaging, which can obtain 
Raman spectra and spatial distribution information simulta-
neously during sample scanning [Qin et al., 2010; Wang et al., 
2017a; Zhai et al., 2017]. There are three ways to acquire Ra-
man images: point-scan, line-scan, and plane-scan [Lohumi 
et al., 2017]. Among them, the detection speed of  line-scan 
mode is faster than that of the point-scan, which can be ap-
plied to the detection of samples with flat surface, and shows 
a good prospect to be used for powdered food safety assess-
ment. Currently, the related reports on the detection of wheat 
flour additives by line-scan Raman imaging focus on benzoyl 
peroxide (BPO) [Li et al., 2019; Qin et al., 2017; Wang et al., 
2017b]. All these reports provided the  spatial distribution 
and quantitative detection model of BPO in wheat flour, but 
the data processing method is achieved by selecting the gray-
scale image corresponding to the Raman peak with the high-
est intensity in the additive Raman spectrum combined with 
the  threshold segmentation method, ignoring the  influence 
of  other bands in  the  Raman spectrum of  the  additive on 
the detection results. In this way, in order to consider the in-
fluence of each band of the Raman spectrum on the detection 
of ADA in wheat flour, we applied the regression coefficients 
of  the  partial least squares (PLS) model to all the  bands 
of  the  sample Raman spectrum to enable the  quantitative 
analysis of ADA in wheat flour.

This study aimed to achieve the  non-destructive quan-
titative analysis of  ADA additives in  wheat flour by  high-
-throughput Raman imaging. Specific objectives were to:  
1) acquire Raman images of  wheat flour, ADA, and  wheat 
flour-ADA mixed samples, and  find the  Raman characteris-
tic peaks of wheat flour and ADA; 2) establish a PLS model 
and extract the regression coefficients to reconstruct the Ra-
man image into a grayscale image; and 3) create a binary im-
age to classify wheat flour pixels and ADA pixels, and establish 
a quantitative analysis model for ADA detection in wheat flour.

MATERIALS AND METHODS

Instruments and reagents
The  high-throughput Raman imaging system was as-

sembled by  Isuzu Optics Corp. (Shanghai, China), and  its 
detailed description can be  found in  Wang et  al. [2017a]. 
Electronic balance (FA2204B) was obtained from Shanghai 
Precision and Scientific Instrument Corp. (Shanghai, China), 
with a weighing range of 0–220 g and an accuracy of 0.1 mg. 
Vortex Mixer (Vortex-Genie 2) was purchased from Scientific 
Industries Inc. (New York, NY, USA), with a 600–3,200 rpm 

speed range. Customized square aluminum alloy container 
had the internal size of 45×45×2 mm (we have determined 
in  the  previous study that the  effective penetration depth 
of line laser to wheat flour is 2 mm).

ADA (97%) was purchased from Xiya Chemical Technol-
ogy Co. Ltd. (Linyi, China). Wheat flour was obtained from 
a local supermarket in Beijing (China), and was determined 
by HPLC to be ADA free.

Sample preparation
The  electronic balance was used to accurately weigh 

0.1 g of ADA and 9.9 g of wheat flour, that were transferred 
into a  50  mL centrifuge tube and  mixed evenly with a  vor-
tex mixer to obtain a  wheat flour-ADA mixed sample con-
taining 10,000 mg of ADA per kg of wheat flour. The mass 
of ADA and wheat flour was adjusted to keep the total mass 
of  each mixed sample at 10 g, and  the mixed samples with 
9 different ADA contents in wheat flour (100; 200; 500; 800; 
1,000; 2,000; 5,000; 8,000; and 10,000 mg/kg) were prepared. 
The mass of  the mixed sample in  the  square container was 
about 2.1  g. To make full use of  the  mixed samples, each 
mixed sample was put into four identical square containers 
to obtain four subsamples. Meanwhile, the pure wheat flour 
sample and pure ADA sample were prepared and divided into 
four subsamples for Raman image acquisition.

Raman image collection
The sample was placed on a single-axis moving platform, 

and the height was adjusted to ensure that the sample surface 
was 20 cm away from the lens. The exposure time of the camera 
was 1,000 ms, and the spatial resolution was 0.125 mm/pixel.  
The  Raman spectrum collection range was 785–1,000  nm  
(corresponding to the  Raman shift was 0–2,728  cm-1), 
and  the  spectral resolution was 0.54  nm. The  moving speed 
of the single-axis moving platform was 0.0823 mm/s. The acqui-
sition area of the camera was 128×45 mm (spatial information 
was 1,024×360 pixels), and  the data was saved as 1,024 pix-
els×360 pixels×512 wavelengths Raman image cube.

Data processing
To reduce the data volume and quickly extract target in-

formation, it was necessary to determine the region of inter-
est (ROI) and spectral range of the Raman image. The cen-
ter of  the  sample Raman image was taken as the  center 
of  ROI, and  a  40×40  mm square area (corresponding to 
320×320  pixels, a  total of  102,400  pixels) was selected to 
ensure that only the sample area was included and the back-
ground area was excluded. The  Raman peak of  ADA was 
mainly located in 400–2000 cm-1, and this spectral range was 
selected for subsequent analysis. The mixed sample was irra-
diated by laser to generate Raman signals and accompanied 
by fluorescence signals, and the high fluorescence directly in-
terfere with the  identification of Raman peak. The adaptive 
iteratively reweighted penalized least squares method can fit 
the Raman spectrum to eliminate the interference of the back-
ground signal, so this method was selected for the correction 
of the Raman spectrum [Zhang et al., 2010].

The PLS model was established using the ADA content 
and  Raman spectra of  wheat flour-ADA mixed samples, 
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in which the calibration set was the average Raman spectra 
of  mixed samples, and  the  prediction set was the  new Ra-
man spectrum obtained by combining the Raman spectrum 
of wheat flour and ADA. The new Raman spectrum as given 
in equation (1):

Sinew=SaCi+
Sf

1-Ci
  � (1)

where: Si
new is  the  new Raman spectrum; Sa is  the  Raman 

spectrum of ADA; Sf is the Raman spectrum of wheat flour;  
Ci is the ADA content of the mixed sample; a total of 9 ADA 
contents (100; 200; 500; 800; 1,000; 2,000; 5,000; 8,000; 
10,000 mg/kg) was used.

The  coefficient of  determination (calibration set is  Rc
2,  

prediction set is  Rp
2) and  root mean square error (RMSE) 

(calibration set is  RMSEC; prediction set is  RMSEP) was 
used to evaluate the performance of the PLS model. The re-
gression coefficient of the optimal PLS model was extracted 
and used to calculate the intensity of each pixel in the Raman 
image of  the mixed sample. The  intensity of each pixel was 
computed according to equation (2):

I=R1X1+R2X2+……+RnXn+R0� (2)

where: I is the intensity; R1-Rn are the regression coefficients 
of each band in the PLS model; X1-Xn are the Raman intensity 
of  each band in  the Raman spectrum of  the mixed sample; 
R0 is the intercept.

To obtain the  PLS model with high predictive perfor-
mance, different methods were used to preprocess the Raman 
spectra of the calibration set and the prediction set, including 
normalization, and multiplicative scatter correction (MSC), 
standard normal variate transformation (SNV), first deriva-
tive (1st), and second derivative (2nd).

The  threshold segmentation method was used to create 
binary images to classify ADA pixels and wheat flour pixels 
in grayscale images of mixed samples, and the threshold was 

determined by the maximum gray value in the grayscale image 
of pure wheat flour. Those with gray values above and below 
the threshold were classified as ADA pixels and wheat flour 
pixels, respectively. PLS model establishment and  spectral 
pretreatment were performed by The Unscrambler X10.4 Soft-
ware (Camo Software AS, Oslo, Norway), and  the  rest 
of the process was completed using MATLAB 7.11 program 
(Math Works Inc., Natick, MA, USA).

RESULTS AND DISCUSSION

Average Raman spectra of wheat flour and ADA
The average Raman spectra of wheat flour and ADA are 

shown in Figure 1. The Raman spectra of the two are signifi-
cantly different. There was a  high fluorescence background 
in  the  Raman spectrum of  wheat flour (Figure  1a), which 
causes the baseline to drift. The peak with the highest inten-
sity was located at 481 cm-1 in the corrected Raman spectrum, 
which was consistent with the  results obtained by other re-
searchers [Czaja et  al., 2016]. This Raman peak was as-
signed to the coupling of C-C-C skeleton bending vibration 
and C-O deformation vibration [Wiercigroch et al., 2017].

The  Raman spectrum of  ADA had a  flat baseline 
and  many Raman peaks (Figure  1b). Three obvious peaks 
could be  observed at 1,121; 1,335; and  1,577  cm-1, respec-
tively. Among them, the 1,335 cm-1 peak had the highest inten-
sity. The model of the molecular structure of ADA with C–N, 
C=O, N=N, N–H and  other bonds is  shown in  Figure  1b 
(upper left diagram). Its molecular formula is  C2H4N4O2. 
Each bond of the functional group has its characteristic vibra-
tion frequency, and the Raman peaks can be assigned accord-
ing to the  different vibration frequencies. The  wavenumber 
of  1,121  cm-1  was assigned to the  in-plane bending vibra-
tion of H–N–H; 1,335 cm-1 was assigned to the asymmetric 
stretching vibration of N–C–N, which was also accompanied 
by the in-plane bending vibration of N–H; and 1,577 cm-1 was 
assigned to the N=N stretching vibration [Li et al., 2015; Xie 
et al., 2013].

FIGURE 1. Average Raman spectra of  (a) wheat flour and (b) azodicarbonamide (ADA). ADA structure model is presented in  left upper corner 
of Figure 1b.
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Average Raman spectra of  wheat flour-ADA mixed 
samples

Figure  2  shows the  average Raman spectra of  wheat 
flour-ADA mixed samples with different ADA contents 
in  wheat flour (pretreated with the  2nd). The  Raman 
spectrum of  each mixed sample contained the  signals 
from both wheat flour and  ADA.  The  two peaks of  ADA 
(1,335  and  1,577  cm-1) could be  observed in  the  spectra, 
but their intensity was lower than that of  wheat flour, 
because the  ADA content in  mixed samples was low. 
The  mixed sample with ADA content of  10,000  mg/kg  
showed the  highest intensity of  the  Raman character-
istic peaks of  ADA.  When the  ADA content in  the  mixed 
samples decreased from 10,000 to 1,000 mg/kg, the inten-
sity of  these peaks decreased continuously. The  intensity 
of  peaks recorded for samples with ADA content lower 
than 1,000 mg/kg was not significantly different. This in-
dicated that the  average spectrum of  the  mixed samples 
could not be  used to detect ADA content in  wheat flour 
effectively. On the other hand, Huang et al. [2016] found 
that the spectra corresponding to pixels can be used to ef-
fectively detect additive particles in  food when detecting 
food additives by  near-infrared hyperspectral imaging. 
Therefore, in the next step of our study, the Raman spec-
trum of each pixel in ROI was analyzed to realize the effec-
tive detection of ADA in wheat flour.

Establishment of PLS model
A total of 9 wheat flour-ADA mixed samples were pre-

pared, and Raman images of 4 subsamples corresponding 
to each mixed sample were collected; then those 4  sub-
samples were aggregated and  remixed, and  divided into 
4  new subsamples to collect Raman images. The  process 
was repeated once more. The  average Raman spectrum 
of each subsample was calculated, and a total of 108 spec-
tra (9×4×3) were obtained as the calibration set of the PLS 
model. The average Raman spectra of wheat flour and ADA 
(based on 4  subsamples of  each) were also calculated 

and  applied to equation  (1) to obtain the  36  new Raman 
spectra (for 9 different ADA contents; 4×9) as the predic-
tion set of the PLS model.

Table 1 shows the PLS model results established by dif-
ferent pretreated Raman spectra. The Rc

2 of the PLS model 
established by  the  original spectra was higher than that 
of  normalized, 1st and  2nd derivative spectra, while the  Rc

2 
of  the  PLS model established by  MSC and  SNV spec-
tra was higher than that of  original spectra. Among all 
PLS models, SNV spectra had the  best prediction result, 
and  the  Rp

2 and  RMSEP values of  the  prediction set were 
0.9212  and  0.0967%, respectively. SNV was used to elimi-
nate the interference caused by surface scattering, solid par-
ticle size, and  light intensity changes on the  Raman spec-
trum of wheat flour particles and this pretreatment method 
had a good correction effect [Huang et al., 2011]. The  re-
gression coefficients of the PLS model established by SNV 
spectra were extracted, as shown in  Figure  3. Higher or 
lower coefficients indicate the wavenumbers that have a sig-
nificant impact on the  PLS model [Esquerre et  al., 2011]. 

FIGURE 2. Average Raman spectra of wheat flour-azodicarbonamide mixed samples with different contents of azodicarbonamide (pretreated with 
second derivative).

TABLE 1. Partial least squares model results established by different pre-
treated Raman spectra.

Pretreatment
Calibration set Prediction set

Factor
Rc

2 RMSEC Rp
2 RMSEP

Original 0.9934 0.0280 0.9071 0.1050 5

Normalized 0.9933 0.0282 0.9086 0.1042 3

MSC 0.9950 0.0244 0.9205 0.0972 3

SNV 0.9951 0.0242 0.9212 0.0967 3

1st derivative 0.9882 0.0374 0.8899 0.1144 2

2nd derivative 0.9930 0.0288 0.9087 0.1041 4

MSC: multiplicative scatter correction; SNV: standard normal variate 
transformation; RMSEC: root-mean-square error of  calibration set; 
RMSEP: root-mean-square error of prediction set.
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In our study, the highest regression coefficient was located at 
1,335 cm-1 (Figure 3), which corresponds with the significant 
Raman peak of ADA (Figure 1b). The regression coefficient 
at 481  cm-1 (significant peak of  wheat flour Raman spec-
trum) also had a certain impact on the PLS model.

Quantitative analysis of ADA in wheat flour
The absolute value of each regression coefficient in the PLS 

model was applied to the Raman image of wheat flour-ADA 
mixed sample, and the intensity of each pixel was calculated 
by equation (2) to convert the 3D Raman image into a 2D 
grayscale image. Wheat flour pixels and ADA pixels were still 
difficult to identify in the grayscale image of the mixed sam-
ple. Therefore, the threshold segmentation method was used 
to create the  grayscale image as a  binary image to classify 
wheat flour pixels and ADA pixels. The PLS model regression 
coefficient was also used to determine the threshold. The in-
tensity of  each pixel in  the  wheat flour Raman image was 
calculated by  equation (2), and  its maximum intensity was 
6.9382, which was selected as the threshold. The pixels with 
intensity above the threshold (white pixels) were classified as 
ADA, whereas those with intensity below the threshold (black 
ones) were classified as wheat flour. No  pixels classified as 
wheat flour were found in the pure ADA image, and no pixels 
classified as ADA were found in the pure wheat flour image, 
which indicated that the threshold can correctly classify wheat 
flour pixels and ADA pixels.

The number of pixels classified as ADA in 4 subsamples 
of each mixed sample was counted (Table 2). The values de-
creased with the decrease of ADA content in each subsample. 
The number of pixels classified as ADA in the mixed sample 
with the  lowest ADA content was 7, 6, 9, and  8, as shown 
in Figure 4. This indicated that the minimum detectable con-
tent of ADA in wheat flour by  this method was 100 mg/kg, 
which was lower than the limit of detection of ADA in flour 
by  near-infrared hyperspectral imaging (200  mg/kg) [Wang 
et al., 2018]. Differences in the number of ADA pixels among 
subsamples were probably caused by the random distribution 
of ADA particles in  the mixed sample. Also, the differences 

in the number of ADA pixels indicate that multiple subsam-
ples need to be  used for the  quantitative analysis of  wheat 
flour-ADA mixed samples. The average number of ADA pix-
els of subsamples was used to establish a quantitative mod-
el (Figure  5). There was a  good linear correlation between 
the  ADA content and  the  average number of  ADA pixels, 
and the coefficient of determination was 0.9858, which indi-
cated that the method established in this study could be used 
for the quantitative analysis of ADA additives in wheat flour.

Raman characteristic peak method (based on Raman 
imaging) was commonly used for detecting additives in food 
products [Dhakal et al., 2016; Qin et al., 2018; Wang et al., 
2017b]. In  our study, this method was used to detect ADA 
in wheat flour-ADA mixed samples. The  single-band image 
corresponding to the  Raman peak with the  highest intensi-
ty in  the  ADA Raman spectrum was selected from the  Ra-
man image of  the mixed sample, and  the  thresholding seg-
mentation method was used to achieve the  classification 
of wheat flour pixels and ADA pixels. The results are shown 
in Table 3. In all wheat flour-ADA mixed samples, the number 

FIGURE 3. Regression coefficient of partial least squares model.

TABLE 2. Number of azodicarbonamide pixels classified in the four sub-
samples of each wheat flour-azodicarbonamide mixed sample.

Content 
(mg/kg)

Subsample 
1

Subsample 
2

Subsample 
3

Subsample 
4 Average

100 7 6 9 8 7.50

200 24 23 28 25 25.00

500 78 76 75 77 76.50

800 114 105 107 105 107.75

1,000 158 149 159 165 157.75

2,000 316 310 308 319 313.25

5,000 724 691 706 694 703.75

8,000 1152 1097 1122 1118 1122.25

10,000 1694 1642 1722 1653 1677.75
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of  pixels classified as ADA by  the  PLS model regression 
coefficient method established in  this paper (Table  2) was 
higher than determined with the Raman characteristic peak 

method. In  the  Raman characteristic peak method, the  in-
tensity of  a  single Raman peak was used as an index for 
determination, and  the  threshold was the  maximum inten-
sity of the wheat flour sample at this band. But some pixels 
were not detected due to their low Raman scattering intensity 
of ADA, which could lead to false negative results. In the PLS 
model regression coefficient method, the  intensities of  all 
bands of each mixed sample were used for calculation, which 
provided more comprehensive information and  had higher 
detection accuracy. The  linear correlation between ADA 
content in wheat flour-ADA mixed samples and the number 
of ADA pixels in Raman images proves the potential of high-
-throughput Raman imaging for the  quantitative analysis 
of ADA in wheat flour. In the next research, the improvement 
of  hardware equipment performance and  spectral pretreat-
ment methods will help to achieve lower concentration de-
tection, and will lay a theoretical foundation for the market-
-oriented application of high-throughput Raman imaging.

CONCLUSIONS

In this study, the large-area detection, visual identification 
and  non-destructive quantitative analysis of  ADA additives 

FIGURE 4. Classification image of wheat flour-azodicarbonamide mixed samples with the azodicarbonamide content of 100 mg/kg.

FIGURE 5. Linear relationship model between azodicarbonamide content in wheat flour and average number of azodicarbonamide pixels.

TABLE 3. Detection results of azodicarbonamide in wheat flour-azodi-
carbonamide mixed samples by Raman characteristic peak method.

Content 
(mg/kg)

Subsample 
1

Subsample 
2

Subsample 
3

Subsample 
4 Average

100 8 6 7 8 7.25

200 24 22 27 24 24.25

500 76 75 72 73 74

800 109 105 103 105 105.5

1,000 153 147 157 165 155.5

2,000 309 307 303 316 308.75

5,000 699 676 696 687 689.5

8,000 1120 1080 1097 1110 1101.75

10,000 1650 1621 1687 1641 1649.75
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in  wheat flour were achieved by  high-throughput Raman 
imaging. The  average Raman spectra of  wheat flour-ADA 
mixed samples showed that the  three Raman characteristic 
peaks of  ADA (1,121; 1,335; and  1,577  cm-1) were ineffec-
tive in evaluating the ADA content in wheat flour. Different 
spectral pretreatment methods were used for Raman spec-
tra of mixed sample images, and the PLS model established 
by SNV pretreatment had a good predictive effect. All the re-
gression coefficients of the PLS model were applied to the Ra-
man spectra of the mixed sample images to convert them into 
grayscale images, but wheat flour pixels and ADA pixels were 
still difficult to identify. Threshold segmentation was used to 
classify wheat flour pixels and ADA pixels in grayscale imag-
es. The classification results showed that the minimum detec-
tion content of ADA in wheat flour was 100 mg/kg, and that 
there was a good linear correlation between the ADA content 
in the mixed sample and the number of ADA pixels in the Ra-
man image, with a determination coefficient of 0.9858. This 
study provides the  method for the  quantitative analysis 
of  ADA additives in  wheat flour as well as a  technical ref-
erence for large-scale rapid screening. This method also ap-
pears to have the potential in future applications for the anal-
ysis of contaminants in other powdered food products.
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