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COURSE PREDICTION OF DRYING CURVE OF PARSLEY ROOT PARTICLES
UNDER CONDITIONS OF NATURAL CONVECTION

Krzysztof Górnicki*, Agnieszka Kaleta

Faculty of Production Engineering, Warsaw Agricultural University, Warsaw
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The mathematical model describing the course of drying curve of single parsley root particles under conditions of natural convection was 
formulated on the basis of the general theory of heat and mass transfer laws. The course of the drying curve was described in two ways: using the 
linear model of the first drying period (without shrinkage) and then using the models of second drying period and the models of first drying period 
taking into account shrinkage and finally the models of second drying period. The second drying period was described in both cases by the same 
models which approximated the shape of dried particles as follows: infinite plane (slices cut crosswise and along the root, axial cylinder slices), 
finite cylinder (slices cut crosswise the root, axial cylinder slices), finite in two dimensions plane (bark rings), infinite cylinder (bark rings). The 
verification confirmed that the following mathematical models describe the course of drying curve with satisfactory accuracy: for crosswise and 
lengthwise slices and axial cylinder slices – the linear model or models with shrinkage in the first drying period and the model of infinite plane 
in the second drying period, for bark rings – the linear model or models with shrinkage in the first drying period and the model of finite plane in 
the second drying period. The values of relative error were not higher than: 1% for linear model, 4% for models with shrinkage, 29% for models 
of the infinite and finite plane drying. The results of modelling pointed out the need of the model formulation of moisture content changes in 
parsley root particles dried in transition period. The results obtained allowed the statement that parsley root can be regarded as an anisotropic 
and heterogeneous body.

NOTATION

 A, A0 – surface area of dried solid, initial sur-
face area of dried solid, (m2);

 a, n – empirical coefficients, dimensionless;
 c – specific heat, (J/(kg·K));
 D – moisture diffusion coefficient, (m2/s);
 Fom – Fourier number;
 k – initial drying rate, (s-1);
 Ms – dry matter of solid, (kg);
 Nu – Nusselt number;
 R – characteristic dimension, (m);
 rw – latent heat of water vaporization, (J/kg);
 t, tA, ta, twb – temperature, temperature of solid sur-

face, temperature of drying air, wet-bulb 
temperature, (°C);
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– dimensionless moisture content;

 u, uc, ue, u0 – moisture content of the dried solid, criti-
cal moisture content of the dried solid, 
equilibrium moisture content of the 
dried solid, initial moisture content of 
the dried solid, (kg H2O/ kg d.m.);

 V, V0, Vs – volume of the dried solid, initial volume 
of the dried solid, volume of the dry 
matter, (m3);

 w, w0 – moisture content of the dried solid, ini-
tial moisture content of the dried solid, 
(% w.b.);

 α – heat transfer coefficient, (W/(m2·K));
 λ – thermal conductivity, (W/(m·K));
 ρs – density of dry matter, (kg/m3);

 τ, τII – drying time, drying time in the first dry-
ing period, (s).

INTRODUCTION

A variety of dried products offerred on the market is
possible due to the continuous development of the
dehydration methods, which allow obtaining the final 
products of high nutritive and sensory quality [Sereno & 
Medeiros, 1990; Kompany et al., 1993]. At present a great 
stress is laid on the optimization of the drying process. 
Hence, well verified mathematical drying models, which 
will enable the determination of optimum parameters of 
the process are necessary. It is necessary to apply bicri-
terial optimization, which enables not only reduction of 
used energy but also obtaining of dried products of good 
quality in the case of food products [Rosselló et al., 1997]. 
Mathematical models also enable to control the process. 
They influence the efficiency of the process and improve 
dried material properties [Jayaraman & Das Gupta, 1992; 
Kiranoudis et al., 1992]. 
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The complete theory of convective vegetable drying has 
not been formulated yet, though many authors undertook 
this task, for example Fortes and Okos [1980]. Publication 
written by Wanaanen et al. [1993], in which authors clas-
sified and analysed mathematical models of porous
solids drying, can be useful for the formulation of the
convection drying theory. Extensive literature review
concerning the modelling of vegetable convection drying 
could be found in the work written by Górnicki [2000] and 
Kaleta and Górnicki [2002]. 

There are not many publications in the literature
concerning convection drying of parsley. They mainly 
deal with very fragmentary research of drying process of
parsley root or qualitative research [Bugrova, 1971; Daudin 
& Richard, 1982; Stehli et al., 1988; Domaga∏a et al., 1996 
a, b; Witrowa-Rajchert, 1999]. Publication concerning
modelling of the convection drying process of parsley roots 
was not found in literature.

The aim of the study was to formulate the mathema-tical 
model (based on the general theory of mass and heat transfer 
laws) describing the course of the drying curve of single pars-
ley root particles under conditions of natural convection. 

MATERIAL AND METHODS

Cleaned parsley roots “Berlinian” were used in research. 
The following samples were examined: (i) parsley slices cut 
crosswise; (ii) parsley slices cut lengthwise; (iii) slices of 
parsley axial cylinder cut crosswise; (iv) ring of parsley root 
bark cut crosswise.

Thickness of parsley slices and rings was: 3, 6 and 9 mm. 
Temperatures of drying air were: 40, 50, 60, 70 and 80°C.

The following measurements were made under labo-
ratory conditions: (i) moisture content changes of the
examined samples during drying; (ii) temperature changes 
inside and on the surface of the examined samples dur-
ing drying; (iii) volume changes of the examined samples
during drying.

Details relative to measurement methodology could be 
found in the work written by Górnicki [2000] and Górnicki 
and Kaleta [2002]. 

MATHEMATICAL DESCRIPTION OF THE COURSE
OF DRYING CURVE

General assumptions of the mathematical description 
of the course of drying curve. The drying process of parsley 
root particles was divided into two drying periods: the first 
one and the second one.

The course of drying curve of parsley root particles was 
described in two ways:

1. applying linear model of the first drying period (with-
out shrinkage) followed by the models of the second drying 
period:

Such mathematical description means that the
following assumptions were accepted: constant drying rate 
du/dτ occurred during the first drying period (that means 
acceptance of assumption that during this period shrink-
age and connected with it change of the heat and mass 
transfer surface have a weak influence on the course of the 
process) and the temperature of the dried particle after pre-
liminary heating reached almost constant value. Then the

drying rate decreased during the second drying period and 
the temperature of dried particle increased reaching the
temperature of the drying air at the end of the process.
The criterion which was used for the division into the 
first and the second drying period was a drying rate and
temperature of the dried particle.

2. applying the models of the first drying period taking 
into account drying shrinkage followed by the models of the 
second drying period:

Such a mathematical description of the drying process 
means that the following assumptions were taken into 
account: drying rate decreased at the beginning of the
process very slightly during the first drying period (assump-
tion of the drying shrinkage occurrence means that changes 
of the heat and mass transfer surface during drying were 
taken into consideration). At the end of this period, tem-
perature of the dried particle increased rapidly. During the 
second drying period, the drying rate decreased and the 
temperature of the dried particle was approximately equal 
to the temperature of the drying air. Criterion of division 
into the first and the second drying period was the drying 
rate and the temperature of the dried particle.

The second drying period was described in both cases 
by the same models which approximated the shape of the 
dried particle to the following forms: infinite plane, finite 
plane, infinite cylinder, finite cylinder. The initial instant 
at which these models began to simulate the second dry-
ing period was however different in both cases, because 
the linear model of the first drying period described the 
process in the shorter period of time than the models with 
the drying shrinkage. In connection with this the moisture 
content regarded as a critical one was different for each
particular model. Dimensions of the dried particles, that were 
changing under the influence of the drying shrinkage, were 
taken into consideration in the models of the second drying 
period. The water diffusion coefficient in parsley root par-
ticles was assumed to be changeable and dependent on mois-
ture content and temperature of the particle during drying.

The first drying period. The course of the drying process 
at the first drying period is determined by the external con-
ditions of mass transfer.

Models used in describing the first drying period are 
presented in Table 1. The linear model (1) was obtained by 
solving differential equation [Pabis, 1965; 1982]:

The models of first drying period Remarks

u(τ)=−kτ+u0 (1) the linear model
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(2)
the model of shrink-
age is determined by 
formula:
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(4)

the model of shrink-
age is determined by 
formula:
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TABLE 1. The models of first drying period [Pabis, 1965, 1994; 
Murakowski, 1994].
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with assumption:

tA=twb (7)

with initial condition u(τ=0)=u0 and with assumption that 
all parameters on the right side of the equation (6) are con-
stant. On the other hand, the solution of equation (6), (if 
beforehand A was replaced by A0, that means acceptance of 
assumption that the surface of dried body changes because 
of the shrinkage) with assumption (7), initial condition 
u(τ=0)=u0, equation:
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and with the use of shrinkage model (3) or (5), are the
models of the first drying period which take into account dry-
ing shrinkage (2) and (4), respectively. Equation (8) means 
that the constancy of the body shape during drying was taken 
into consideration. Such an assumption means that the dried 
body shrinks in three dimensions in the same degree.

The parameter k, which occurs in the models of the 
first drying period, determines the initial drying rate. The 
drying rate was evaluated using linear regression assuming 

that the equation (1) describes the function approximating 
four repetitions of the moisture contents measurement in 
the dried particles with the relative error not greater than 
1%. The initial value of the drying rate determined that way 
was applied to all models of the first drying period (1, 2, and 
4). It was assumed that the models describe drying kinetics
correctly when values of the relative error of model (1) do 
not exceed 1%, and of models (2) and (4) do not exceed 4%. 
A decision was taken to increase the value of the relative 
error to 4% due to the nature of the course of the relative 
errors for models of the first period with drying shrinkage. 
At first, the relative error for these models reached negative 
value, afterwards it increased reaching zero value and then 
grew rapidly. 

Parameters a and n occurring in the shrinkage models 
were chosen using Statistica program as parameters appear-
ing in equations (models (3) and (5), respectively) approxi-
mating measurement points of volume changes of particles 
during drying.

The second drying period. It was described using the fol-
lowing form of the equation of the solid convection drying:
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Forms by which 
particular kinds of 
dried particles were 
approached

The models of second drying periods, where 
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Remarks

Infinite plane (slices 
cut crosswise the 
root, slices cut along 
the root, axial cylin-
der slices),
Infinite cylinder 
(bark rings)
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TABLE 2. The models of second drying period [¸ykov, 1968].
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It could be accepted that the water movement inside the 
dried solid is only a diffusion movement in the convection 
drying process of agricultural products [Pabis, 1982].

The equations which model the second drying period 
were obtained taking into consideration the following sim-
plifying assumptions in the equation (9): constant shape 
and volume of dried particle, constant value of the water 
diffusion coefficient, the same moisture content at any point 
of dried solid at the beginning of the second drying period 
and constant initial conditions of the first type. Equations 
applied to the description of the second drying period of 
parsley root particles and forms which approximated the 
shapes of the dried particles are presented in Table 2.

Knowledge of the value of the water diffusion coefficient 
was necessary for using models of the second drying period. 
On the basis of the assumed variability of dimensions of 
parsley root particles and variability of water diffusion
coefficient during drying, the coefficient was determined 
applying the method of inverse problem [Jaros, 1993].

Equations (10, 11 and 12) in general form could be
written as:
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where n=1, 2 ..., the Fourier number for mass transfer 
depends on the water diffusion coefficient, time and
particle dimension:
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Functions fn (equation (13)) could be treated as continu-
ous functions, which approximate the sums of series from 
respective equations (10, 11 and 12) [Jaros, 1993]. Therefore, 
it is possible to find functions fn

-1, which are inverse to fn:
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Five terms of each series were taken into consideration 
during determination of the reduced moisture content U(τ) 
from the infinite series (10, 11 and 12). Functions approxi-
mating dependencies (13) were determined using the meth-
od of function “sticking” [Jaros, 1993]. The reduced mois-
ture content can be made dependent on time if the values 
of the critical and equilibrium moisture contents are known. 
Fourier number was made dependent on reduced moisture 
content and consequently on duration of the drying process 
(15) and then using the dependence of Fourier number 
upon the water diffusion coefficient (14) the values of the 
coefficient were determined for given moisture content, 
temperature and particle dimension. Calculation results, 
for all forms with which dried particles were described, 
were approximated using statistical program Statistica to 
the often occurring in the literature expression (16) (e.g. 
[Parti & Dugmanics, 1990])
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where: A, B, C – constants.
The moisture content which occurs in the equation 

(16) changed its value from critical to equilibrium. Various 
critical moisture contents and various temperature values 
were considered depending on how the first drying period 

was modelled. When the first drying period was described 
using linear model, the temperature of the dried particles 
was determined from equation of the heat balance. When 
the first drying period was described using model with the 
drying shrinkage, then according to the assumptions, the 
temperature of the particle already at the beginning of the 
second drying period is similar to the temperature of the 
drying agent. Therefore, the temperature in equation (16) 
was treated as constant and equal to the temperature of the 
drying agent. Equivalent particle dimension was the dimen-
sion which determined the particle size in the second drying 
period. The quantity took into consideration the changes of 
the dimensions caused by the shrinkage during the drying 
process.

Equation of heat balance. Equation of heat balance of 
the dried solid heating [Pabis, 1982], after applying appro-
priate dependences and assuming, that the average value 
of the dried solid temperature does not differ in essential 
manner from the temperature value of the solid surface in 
the same moments of the process duration, obtains the fol-
lowing form:
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(appropriate transformations could be found in the work 
written by [Górnicki, 2000]). 

The following dependences of specific heat of parsley 
root upon moisture content were used for solution of the 
differential equation: 

c=1382+28.05w,  0≤w≤w0,
20≤t≤90°C [Gromov, 1971] (18)

c=1373+28.14w,  0≤w≤w0,
t=20°C [Ginzburg & Gromov, 1987] (19)

Power shrinkage model (5) and expression (8) were 
used for determination of the surface area of dried solid 
presented in equation (17).

The heat transfer coefficient for all kinds of parsley root 
particles was determined using two methods: the linear 
model of the first drying period (6) and Nusselt number
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where: L – characteristic dimension.
General form of the dimensionless equation of the heat 

movement, for simultaneous heat and mass transfer, for 
natural convection is as follows:

Nu=f(Ar, Pr), (21)
where: Ar – Archimedes number, Pr – Prandtl number.
Due to the lack of appropriate dimensionless equation 

for the investigated range of product (Ar·Pr), a decision was 
taken to apply dimensionless equation determined for heat 
movement only [Pohorecki & Wroƒski, 1977; Strumi∏∏o, 
1983]

Nu=0.54(Gr·Pr)0.25, (22)
for 5×102<Gr·Pr<2×107

where: Gr – Grashof number.
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Such a decision is often taken in practice. The expres-
sion du/dτ was obtained by differentiation of function u(τ) 
which approximates the results of four measurement repeti-
tions of moisture content changes during drying.

The equation (17) was used for temperature modelling 
of parsley root particles during the second drying period, 
when the first drying period was described by the linear 
model. Simulation program CSSP was applied to solve the 
equation.

RESULTS

Mathematical models of the first and the second dry-
ing period were verified using experimental data. Values 
determined from the discussed models were compared to 
the values calculated from the function (empirical formula) 
approximating results of the four measurement repetitions 
of the moisture content changes in time.

Examples of drying curve approximation of crosswise 
cut slices (6 mm thick, dried at 60°C) by using the linear 
model of the first drying period and slices from the axial 
cylinder of parsley root (6 mm thick, dried at 50°C) by 
using models of the first drying period taking into account 
shrinkage and with models of the second drying period were 
presented in Figures 1 and 2. In the second period of drying, 
the slices discussed were described using infinite plane and 
with shape of finite cylinder. 

Consistency verification of calculation results with 
empirical data were conducted using diagrams present-
ing moisture contents determined from the models as a 
function of moisture contents determined from empirical 
formula which is a function approximating results of the 
four measurement repetitions of the moisture content 
changes in time. Relative and absolute errors of drying 
curve approximation by using discussed models were also 
taken into account. Analysis of graphs obtained (Figures 1 
and 2) shows that the results of calculations obtained from 
the discussed models are very well correlated with empirical 
data (correlation coefficient amounts to 0.99). The model of 
infinite plane drying approximates drying curve in the sec-
ond period with slighty lower relative and absolute error. 

Consistency of calculation results with empirical data 
for the remaining experimentally-obtained drying curves 
was verified in analogous way. The correlation between 
the data obtained from mathematical models and empirical 
data was high (the lowest correlation coefficient amounted 
to 0.95). Therefore it could be stated that both the linear 
model and two models with shrinkage approximate the dry-
ing curve in the first drying period well. Taking additionally 
into account relative and absolute error, it could be accepted 
that the model of infinite plane drying approximates the 
drying curve in the second drying period for crosswise and 
lengthwise cut slices of parsley root and slices from the axial 
cylinder a little more accurately. The model of finite plane 
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FIGURE 1. Approximation of drying curve for 6 mm thick crosswise cut parsley slices dried at 60°C; ( ) – moisture content, ( ) – temperature 
on the solid surface, ( ) – temperature inside the solid, ( ) – linear model of the first drying period (1), ( ) – model of the second drying 
period (infinite plane (10)), ( ) – model of the second drying period (finite cylinder (11)).



16 K. Górnicki & A. Kaleta 17Course prediction of drying curve of parsley root

drying was slightly better for bark rings when relative and 
absolute error were taken into account.

The maximum value of the local relative error of dry-
ing curve approximation by the models of second drying 
period amounted to 29%. This fact could be explained by 
very small values of moisture contents for which the error 
was calculated.

The values of parameter n applied in the model of the 
first drying period with shrinkage (4) are presented in Figure 
3. For all kinds of particles, the values of the parameter 
increase with the decreasing temperature of drying air and 
depend on the kind of particle but not on particle thickness. 
Analogous dependences were obtained for the parameter a.

The following dependences were obtained as a results of 
mathematical modelling of drying curves of single parsley 
root particles under conditions of natural convection.

Initial drying rate of parsley root particles increases 
with the increasing temperature of drying air and with a 
decrease in particle thickness (well then with an increase in 
comminution degree) and depends on the kind of particle. 
The values of initial drying rate for axial cylinder slices are 
presented in Figure 4.

The critical moisture content which conventionally 
divides the first and the second drying period decreases with 
the increasing temperature of drying air and a decrease in 
particle thickness. Such a trend is caused by the above-dis-

cussed dependence of initial drying rate on the mentioned 
parameters. Critical moisture content depends also on the 
kind of parsley root particle. The values of critical moisture 
content for 3 mm thick different kinds of parsley root par-
ticle are presented in Figure 5.
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FIGURE 2. Approximation of drying curve for 6 mm thick slices from axial cylinder of parsley root dried at 50°C; ( ) – moisture content, ( ) 
– temperature on the solid surface, ( ) – temperature inside the solid, ( ) – model of the first drying period taking into account shrinkage (4), 
( ) – model of the first drying period taking into account shrinkage (2), ( ) – model of the second drying period (infinite plane (10)), 
( ) – model of the second drying period (finite cylinder (11)).
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The values of water diffusion coefficient in the parsley 
root particles were determined in indirect way, that means, 
on the basis of mathematical model of drying in the second 
period. The coefficient depends on the temperature (of 
drying air and average temperature of particle), moisture 
content in the particle, kind of particle and also, by taking 
into account the shrinkage, on variable dimension of par-
ticle. Water diffusion coefficient increases with the increas-
ing temperature of drying air. The following dependence 
of the discussed coefficient on the moisture content was 
obtained: for low moisture contents water diffusion coef-
ficients increase with an increase in moisture content and 
after reaching the maximum the values of the coefficient 
decrease. Then when the moisture content approaches 
critical value, the water diffusion coefficient takes constant 
value. The dependence of the discussed coefficient on the 
kind of particle is presented in Figure 6. The above-dis-
cussed nature of changes of water diffusion coefficient with 
moisture content is caused by the fact that with a decrease 
in moisture content during drying, diffusion of water vapour 
begins to play a dominant part in water transport. Process 
of diffusion stops when moisture content in dried particle 
approaches zero. When the moisture content approaches 
critical value, the water diffusion coefficient takes constant 
value. That means that the process of diffusion takes place 
only in liquid phase.

The results of the modelling also point out the neces-
sity of formulation of model of moisture content changes in 
dried parsley root particles for transition period in the sub-
sequent research. Mechanisms of simultaneous external and 
internal mass transfer should be included in the model.

CONCLUSIONS

1. The obtained results of the research suggest that dur-
ing the convective drying of the parsley root particles there 
is a period of time during which the conditions of external 

mass transfer determine course of the process. It is proved 
by the verified mathematical models of the first drying 
period:
 – the linear model (1) with maximum relative error 1%,
 – models with drying shrinkage (2) and (4) with maxi-

mum relative error 4%.
2. The results of the linear model (1) verification indi-

cate that during the convective drying process of parsley root 
particles the period of constant drying rate takes place.

3. Verified models of the first drying period (2) and (4), 
taking into account drying shrinkage of parsley root par-
ticles, confirm that decreased drying rate during the first 
drying period could be caused by the shrinkage of drying 
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particles.
4. Model of infinite plane drying predicts well the course 

of drying curve in the second drying period for crosswise 
and lengthwise cut slices of parsley root and slices from the 
axial cylinder. Model of finite plane drying predicts well the 
course of drying curve in the second drying period for bark 
rings. 

5. Results of modelling suggest the necessity of for-
mulation of moisture content changes model in dried 
parsley root particles for transition period. Mechanisms of 
simultaneous external and internal mass transfer should be 
included in the model.

6. The results obtained allowed the statement that 
parsley root can be regarded as an anisotropic and hetero-
geneous body.
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Agropromizdat, Moskwa (in Russian).

7. Górnicki K., 2000, Modelowanie procesu konwekcyj-
nego suszenia korzeni pietruszki. PhD Thesis. Warsaw 
Agricultural University-SGGW, Poland (in Polish).

8. Górnicki K, Kaleta A., Kinetics of convection drying of 
parsley root particles. Pol. J. Food Nutr. Sci., 2002, Vol. 
11/52, No 2, 13–19.

9. Gromov M.A., Teplofizičeskije charakteristiki 
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PRZEWIDYWANIE PRZEBIEGU KRZYWEJ SUSZENIA CZÑSTEK KORZENI PIETRUSZKI
W WARUNKACH KONWEKCJI NATURALNEJ

Krzysztof Górnicki, Agnieszka Kaleta

Wydzia∏ In˝ynierii Produkcji, SGGW, Warszawa

Sformu∏owano matematyczny model opisujàcy przebieg krzywej suszenia pojedynczych czàstek korzeni pietruszki 
w warunkach konwekcji naturalnej, oparty na prawach ogólnej teorii wymiany ciep∏a i masy. Przebieg krzywej suszenia 
opisano w dwojaki sposób: modelem liniowym pierwszego okresu suszenia (bez uwzgl´dnienia skurczu suszarniczego)
a nast´pnie modelami drugiego okresu suszenia, modelami pierwszego okresu suszenia uwzgl´dniajàcymi skurcz suszar-
niczy a nast´pnie modelami drugiego okresu suszenia. W modelach drugiego okresu suszenia przybli˝ano kszta∏t suszonej 
czàstki nast´pujàco: nieograniczonà p∏ytà (plaster krojony w poprzek i wzd∏u˝ korzenia, plaster z walca osiowego), ogra-
niczonym walcem (plaster krojony w poprzek korzenia, plaster z walca osiowego), ograniczonà w dwóch wymiarach p∏ytà 
(pierÊcieƒ z kory), nieograniczonym walcem (pierÊcieƒ z kory). Na podstawie przeprowadzonej weryfikacji stwierdzono, ˝e 
nast´pujàce matematyczne modele z zadowalajàcà dok∏adnoÊcià opisujà przebieg krzywej suszenia pojedynczych czàstek 
korzeni pietruszki: dla plastrów poprzecznych i wzd∏u˝nych oraz plastrów z walca osiowego – w pierwszym okresie suszenia 
model liniowy lub modele uwzgl´dniajàce skurcz suszarniczy, w drugim okresie model suszenia p∏yty nieograniczonej, dla 
pierÊcieni z kory – w pierwszym okresie suszenia model liniowy lub modele uwzgl´dniajàce skurcz suszarniczy, w drugim 
okresie model suszenia p∏yty ograniczonej (przyk∏adowe rysunki 1 i 2). B∏àd wzgl´dny nie przekracza∏: dla modelu linio-
wego 1%, dla modeli uwzgl´dniajàcych skurcz suszarniczy 4%, dla modelu suszenia p∏yty nieograniczonej i ograniczonej 
29%. Zasugerowano, i˝ rezultaty modelowania wskazujà na potrzeb´ sformu∏owania w dalszych badaniach modelu zmian 
zawartoÊci wody w suszonych czàstkach korzeni pietruszki dla okresu przejÊciowego. Zale˝noÊci uzyskane w wyniku 
matematycznego modelowania krzywych suszenia pojedynczych czàstek korzeni pietruszki w warunkach konwekcji natural-
nej oraz modelowania skurczu suszarniczego tych czàstek przedstawiono na przyk∏adowych rysunkach 3–6. Uzyskane wyniki 
da∏y podstaw´ do stwierdzenia, ˝e korzeƒ pietruszki jest cia∏em anizotropowym i heterogenicznym. 


