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MULTI-SENSOR ODOUR DETECTION AND MEASUREMENT OF POLLUTED FOOD
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This paper describes an experiment into detecting pollution of water and food samples with ammonia. The novelty of the work is the use of
an “electronic nose” to measure the smell of the samples, and application of an algorithmic procedure called “decision trees” to these measure-
ments, in order to determine the presence of ammonia in the samples. The results obtained suggest that an appropriate extension of that method
should allow not only for qualitative, but also for quantitative analysis of ammonia pollution in food.

INTRODUCTION

Recent years have shown that people are really
interested in the volatile components responsible for
flavour perceptions. Food sensory attributes are becoming 
a very important measure of the quality of food, because
they reflect the criteria that drive preference and purchas-
ing consumer decision [Grigioni et al., 2000]. For example,
unacceptable flavour and odour development is one of the
most prevailing reasons for consumer rejection either in
raw, processed or packed food [Mottram, 1998]. Gray et al.
[1996] outlined a classification of undesirable meat
flavours that are namely related to oxidative rancidity,
processing–induced and feed–derived flavours, among
others. Especially in raw meat, variations in flavour and
odour arise from animals fed different finishing–diet, 
e.g. pasture or feedlot. Odorant molecules are typically
small, partly hydrophobic. They tend to have one polar
group which frequently contains an oxygen moiety,
although nitrogen and sulfur moieties can also be found.
The detection limit for an odorant molecule may be as low
as a few parts per million and thousands of distinct odors
can be discriminated [Aparicio et al., 2000; Burl et al.,
2001; Clarke, 1986]. Odours can be complex mixtures of
many hundreds chemical species and often even subtle
changes in their relative amounts can be detected as 
a change in the odour. Currently, sensory evaluation and
headspace direct gas chromatography or mass
spectrometry analysis have been carried out to determine
flavour quality wherever aroma, smell or the release of
volatile components are important and should be taken
into account in quality assessment. An electronic nose
offers an alternative technology which will, as it is hoped,
complement or in some cases replace the currently used
approaches. An electronic nose is based on an array of
sensors, each of which has a partial specificity and
responds to a number of different chemicals or classes of
chemicals [Gardner et al., 1994; Albert et al., 2000]. This

attempt seems to be similar to biological olfactory system
where receptors respond to more than one chemical
compound and each chemical compound elicits the
responses from more than one detector [Malnic et al.,
1999; Pearce, 1997a, b]. Identifi-cation of an unknown
molecule cannot in general be achieved by analyzing the
response of a single sensor element.

An alternative could be the use of conventional
approaches to chemical sensors of “lock – and – key”
design, wherein a specific receptor is synthesized in order to
strongly and highly selectively bind the analyte of interest
[Albert et al., 2000; Lonergan et al., 1996]. Such approaches
are appropriate when a specific target compound is to be
identified in the presence of controlled background and
interference. However, this type of approach requires the
synthesis of a separate, highly selective sensor for each
compound to be detected. It is not particularly useful for
analyzing and classifying complex vapour mixtures, 
e.g. cologne, beers, foods, mixtures of solvents, 
etc. Therefore an electronic nose seems to be the right
choice for food analysis. It must be complemented by
pattern recognition methods necessary to classify, identify
and in some cases determine the quantity of chemical
compounds in the vapour phase, which interpret the 
measurements made by that device. They take into account
the compound response of the whole array of sensors, and
an attempt to identify the flavour by comparing that
response to a reference library of previously obtained meas-
urements of known samples [Freund et al., 1995; Lonergan
et al., 1996; Li, 2002, 2003].

In this work, used was made of an electronic nose
Cyranose 320 (CyranoSciences Inc.) to detect the smell of
ammonia, treated as a pollution of the investigated samples.
Ammonia appears in different concentrations and in
various headspaces generated by food samples. 
An algorithmic method was proposed to identify ammonia
in such headspaces, by analyzing the output of the
electronic nose. The algorithm is based on the decision
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trees method [Witten et al., 1999] and is implemented in the
form of lazy decision trees [Friedman et al., 1996], which
guarantees shorter time and memory consumption during
the computation.

MATERIAL AND METHODS

A commercially available electronic nose, Cyranose 320
(Cyrano Sciences Inc.) [Cyranose 320, part number 
11 60001], with an array of 32 individual thin-film carbon
black-conducting polymer sensors was used (Figure 1). 
The instrument is very popular in the analysis of volatile
compounds and may be regarded as a comparator of chemical
vapours. The result of measurements made with this
instrument is the measured change of the resistance 
R of each chemical sensor in the array when the instrument is
exposed to a flowing vapour. This is a differential measure-
ment with the sensor response defined as (Rmax – R0)/R0 with
R0 being the resistance during a baseline gas flow and Rmax

being the maximum resistance during exposure to the sample
vapour. Both values are measured independently by sample
paths present in the sampling system. The pump speed at
which the pump draws the vapours into the sampling chamber
have been determined by the Pc-nose software shipped with
the Cyranose 320. Typically low or medium pump speeds 
(50 and 120 cc/min, respectively) are used for baseline and
sample, whereas a high (180 cc/min) pump speed is nearly
always used to purge the system. After collection, the raw data
is subjected to signal pre-processing, post-processing and
statistical analysis. The recognition of unknown samples is
usually based on a comparison of measured signals with the
learned signals, stored in the memory of Cyranose 320.
Because the instrument’s response is based on the summation
of the chemical and physical properties of the entire sample,
the Cyranose 320 is not intended to provide information
concerning the composition of complex mixtures. It is
designed to perform the classification by comparing the
examined vapour to a large number of odours of known
characteristics which can be stored in instrument’s memory.
Standard procedures for pattern recognition: 
K- nearest neighbours KNN, K means and Canonical
Discriminant Analysis CDA are built-in into the device and
used for that task.

Use was also made of another pattern recognition
procedure, decision trees, implemented in programming
language Java and run on a desktop computer. It was
applied to the data gathered by the electronic nose
Cyranose 320 that are treated as the input to our program. 

Sample preparation. A total of 20 mL of 1 ppm, 10 ppm, 
50 ppm, 70 ppm, 100 ppm and 200 ppm experimental solu-
tions of ammonia were made separately, and smelled by
Cyranose 320. A pure p.a. ammonia solution 25% was used.
All samples were prepared in Lab environment at ambient
conditions. In most of the cases, typical variations of tem-
perature in the laboratory had no significant impact on the
identification success, both when using the Cyranose 320
built-in software and using decision trees. Time of the expo-
sure of each of sensor and flow rate for the analyte above
the detectors was regulated during the experiment. 
The training protocol for each odorant exposure was 10 sec
for flow of clean air, followed by 40 sec for flow of air con-
taining the odorant and followed by another 45 sec for flow
of clean air used to purge all remaining samples from the
sampling system including the sensors. The detectors were
exposed to each sample of odorant at least 5 times, in vari-
ous orders. The same protocol was applied in the attempt to
identify the smell of ammonia in food samples. The high
frequency noise in the output data was reduced using 
digital filtering, namely the Savitsky–Golay procedure. 

Decision model. Measurements received from the device
were represented as vectors of 32 values. The aim was to 
create rules that could be used to classify unknown samples.
The pattern recognition method used were decision trees
(DT). One of the advantages of this approach is that,
besides identifying the samples, it also gives the chance to
determine which sensors were dominant in the recognition
process. PCA was used to increase DT’s efficiency by find-
ing statistical correlation between co-ordinates (elements of
the vector of the values) and transforming the data in order
to make advantage of that knowledge.

In general, the algorithm has two stages: teaching and
asking. In the first phase the system is given identified
samples which are assumed to be 100% correct (properly
identified). On the basis of an analysis of those training
samples, the system creates decision trees used in the 
second phase. 

Decision trees. The algorithm to classify an unknown
sample, given a set of training samples, is based on 
the decision trees method [Witten et al., 1999]. Samples,
as explained above, are indeed vectors of the responses 
of 32 sensors. 

1. Input: An unknown sample and a set of training
samples.

2. Choose a sensor and a threshold value, split the set of
training samples into two subsets according to whether the
value of that sensor exceeds the threshold or not.

3. Apply the same procedure to the subset in which the
unknown sample falls, according to the value of the chosen
sensor and threshold.

4. Stop splitting when the set of training samples
contains samples of one type, only. Classify the unknown
sample to be of the type of the samples in the set. 

FIGURE 1. The Cyranose 320, The Cyranose 320 Electronic Nose,
User’s Manual part number 11 60001, CYRANOSciences, Inc.
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The crux of the method is the principle how to choose
the sensor and how to set the threshold in point 2 of the
algorithm above. We used the number of pairs with
different answers that are differentiated by that split to
choose the sensor and threshold. At each stage of the
computation, the optimal choice of sensor and threshold is
made, i.e. the one which guarantees the maximal number of
pairs correctly differentiated. 

In the simplest case, we have samples of two types in our
set (Figure 2). One is the set of samples with specific odour
and the other is the set of samples without it. Of course, the
first few sensors used to split the set of training samples in
the procedure above are the most important ones when
deciding about the presence/absence of that odour. 
The information about those sensors is an additional
outcome of the identification procedure.

In our implementation, the above algorithm is modified
in order to reduce its running time and memory
consumption, by using the lazy decision tree technique
[Witten et al., 1999]. It is achieved by memorizing the
chosen sensors and thresholds after each unknown sample.
The algorithm used guarantees that always the same sensors
and thresholds are chosen, independently of the unknown
sample, as long as it falls in the same subset after the split as
one of the previous unknown samples. Therefore in such
cases it is enough to use the sensors and thresholds chosen
for previous samples, without the need to search for the
optimal choice in each time. Only when the unknown
sample falls into a subset into which no previous unknown
sample has fallen, the search for the optimal choices must
be conducted. 

Principal Components Analysis. PCA can be used to find
correlation in the data sets. Afterwards the data is rotated so
that the principal components become the axes – a change of
the co-ordinate system is performed. As a result, the decision
tree algorithm is working more efficiently – it can create
more efficient trees. On the other hand, the side-effect is the
loss of knowledge which sensors are the most important ones.

RESULTS AND DISCUSSION

The experiment focused primarily on the qualitative
analysis. Samples were divided into three basic groups: pure
water, ammonia water with various concentrations of
ammonia and natural food samples: canned meat and
smoked pork sirloin, and the same samples polluted with

ammonia. The presence of the smell of ammonia in the
headspace of all three groups was detected. Because the
pump speeds were the same in all experiments, the effects
of pressure change or other flow effects had no impact on
the calculation of sensor responses. The examinations of the
decision trees used by our algorithm show that sensors 23, 
5, 6 in that order are relevant for recognition of water
vapour in the headspace (Figure 3). 

The shapes of the curves describing the behaviour 
of all sensors active during the investigation of the
headspace for samples from the second group were shown
in Figure 4. The detailed analysis indicated that the same
sensors as in the case of pure water have had meaning.
Especially sensors 6 and 23 seem to be useful in detecting
the smell of ammonia independently of its concentration,
in the range of the investigated concentrations. 
The changes in the sensors response for these sensors
compared to the changes that appeared for samples of
pure water, are distinctively different.

In the case of ammonia treated as chemical pollution of
food, it was possible to distinct natural, unpolluted samples
from the polluted ones for canned meat as well as for
smoked pork sirloin. Similar results were obtained for slices
of dry, smoked sausage.

CONCLUSIONS

Cyranose 320 was successfully applied to detect the
presence of smell of ammonia in several headspaces. In all
cases of the experiment, the background was the water
vapour of different levels of saturation, that was acting on

The second level cut

The first level cut

FIGURE 2. Decisive trees example.
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FIGURE 3. Changes in the electric resistance of each chemical sensor
in the 32-sensor array of the Cyranose 320 during the investigation of
the headspace of pure water.
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FIGURE 4. Mean of the response of the sensor from 1 to 32 to head-
space of ammonia water with various percentages.
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the same sensors as ammonia but with other responses. In the
case of water solutions, it was possible to distinguish several
levels of concentration of ammonia. For more complex
headspace, as is produced by food samples, we have been able
to distinguish between clean samples and polluted samples.
The quantitative analysis of food samples depends on the
presence of other odours in the investigated headspace and
should be possible only in the case of canned meat. 
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