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In this paper we present an introduction to the computer science methods of chemometrics. Chemometrics is understood here very broadly,
as the area covering the methods used to analyze vast amounts of numerical data obtained in the course of chemical, physical and sensoric exper-

iments in the area of food science and technology.

INTRODUCTION

The International Chemometrics Society (ICS) offers
the following definition of chemometrics: Chemometrics is
the science of relating measurements made on a chemical sys-
tem or process to the state of the system via application of
mathematical or statistical methods. Chemometric research
spans a wide area of different methods, which can be applied in
chemistry. There are techniques for collecting good data (opti-
mization of experimental parameters, design of experiments,
calibration, signal processing) and for getting information from
these data (statistics, pattern recognition, modeling, structure-
-property-relationship estimations).

Bearing in mind that most of the readers of this paper
have chemical or biological background, we present chemo-
metrics as it is seen from the computer science point of
view, concentrating on the typology of methods used to get
information from the data collected in experiments.

WHERE THE DATA COMES FROM

Nowadays food science evolves in the same direction as
all the applied experimental sciences: partially or even com-
pletely automated experiments yield vast amounts of raw
data as the output. The main scientific task is to analyze it
and uncover the real processes hidden behind the columns
of numbers. One should keep in mind that working with the
natural, biologically diverse material, all the data exhibits,
apart from the processes to be found, also statistical differ-
ences following the normal distribution. Even more, the
materials investigated in food science change their proper-
ties with time, and the state in which they should be investi-
gated lasts for a short period of time, only.

The properties of food products which are measured are
mainly those measurable in the sense of “fundamental sci-
ences”: chemistry, physics, biology, physiology, each of

which offers its own, specific methodologies, measures, and
terminology to be applied.

The situation of the researcher can be quite different:
one extreme is that he possesses the complete mathematical
model of the process, and the whole task reduces to fitting
the data with the theoretical curves, determining the con-
stants and taking care of the measurement errors. On the
other extreme one may have data recording many parame-
ters of the experiment and not even a slightest clue what
kind of statistical regularities the data exhibit, let alone to
know which parameter determines which and how.

FUNDAMENTALS

We deal with samples or objects, typically denoted by s,
which can be thought of as experimental samples in a labo-
ratory, or items on a production line in a factory. Attributes
or values are functions v which assign to every object a num-
ber v(s), representing a certain property of s. Weight,
length, fat content of a meat unit, age, length, fat content,
sex of an animal, fraction of unsaturated fatty acids, volume
and weight of an olive oil probe, efc. can be the attributes.
Note that sex of an animal, even though not a number by
itself, can be easily and conveniently represented by a num-
ber (say: 0 for male, 1 for female). Most of the natural
attributes are nominated values, and are expressed as mul-
tiples of an arbitrarily chosen measurement unit.

Throughout the text, most of the time we assume that
the problem we face is the following: given is an attribute v,
which is either difficult or expensive to evaluate exactly for
each object individually. The examples might be: the fat
amount in a carcass (expensive to evaluate because it would
require a large amount of labor); the optimal “best before”
date (impossible to evaluate because this time becomes
known precisely when the item does not qualify for sale any
longer). Our wish is to find a method to estimate the value
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v(s), as accurately as possible, by the value f(v(s),..., V(s))
of a function f, which can be computed given the values of
the attributes v(s),..., v,(s) which in turn can be evaluated
easily and cheaply. So we seek a methodology to find such
functions f, given the list of easy to evaluate attributes of s.

Summing up, our data are vectors of numbers, of fixed
length. In our terminology, each vector is the sequence
v(s)=(1(S),..., va(s)) of the values of certain attributes
of the object s. Besides that, we have a number of vectors:
v(s1),.--,¥(sy), for which the values of the target attribute v
are known. These are the reference values.

The progress of the chemometrics is due to the com-
bined impact of two fundamental factors: (i) the progress of
the instrumental methods, which enlarges the list of easily
evaluable attributes; and (ii) the progress in the methodol-
ogy of determining approximations of an attribute by func-
tions of other attributes.

The first of them is driven by the advances of the “fun-
damental sciences” we have already mentioned: chemistry,
physics, biology and physiology.

This text deals almost exclusively with the second com-
ponent above, describing some of the methods offered by
mathematics, statistics and computer science for the pur-
pose of analyzing data gathered using the methods of the
respective “fundamental sciences”.

DISTRIBUTIONS AND STATISTICS

As a result of an experiment we get datasets of various
formats. From both scientific and practical standpoint the
data should represent important qualitative and quantita-
tive characteristics of the objects which have undergone
experimental examination. The quantitative characteristics
are generally expressed in the widely accepted units of the
SI system.

For the processing purpose, the quantitative data is
expressed as floating point numbers of certain precision
(number of decimal places). Further processing is done
using the same precision. This seems obvious, but has some
non-obvious consequences.

One of them is that numerical errors may occur. They are
caused by the fact that, e.g. a product of two very large num-
bers, which are representable in the given precision, may
well be too large to be representable itself. In this case, the
result of the multiplication can be quite unpredictable, and
depends on the software and hardware used to process the
data. A similar phenomenon can happen on the opposite
end of the precision scale: a multiple of two numbers which
are positive may be calculated as 0 because the real positive
result of the multiplication is too close to 0 to be repre-
sentable in the given precision as a nonzero number. And,
of course, even if these extreme errors do not occur, still
significant digits of the data can get lost in the processing, if
they are located close to the extremes.

These problems can be easily avoided by choosing a rea-
sonable multiple of the basic unit to represent the data in
numerical form. The available choices of the multiples
range from tera (prefix T), which is 10" to atto (prefix a),
which is 1018; therefore there is always a choice for which
the numbers are within a reasonable range.

Besides the errors introduced by the computer process-
ing itself, there are of course measurement errors, unavoid-

able in experimental sciences. Certainly, the accuracy of the
calculated values cannot exceed the accuracy of the input
data. In case the real measurement error Av of the value v
is difficult to estimate as an absolute value, it can be esti-
mated in terms of a relative error dv according to the for-
mula:

where d is the first significant digit of the approximation,
and n is the number of the significant digits.

In most of the cases, the final results of the computations
depend on many parameters v; of the initial, raw data, each
of which contributes its own error to the final error of the
computed value v=f(vy,v,,...). If the errors of vy, vy,... are Avy,
Av,,..., then the error Av of the result can be estimated as:

of of

Av=—]Av,+|— AV, +...
Y o " v, K

The above formula is particularly useful for estimating
errors of parameters represented as dimensionless num-
bers. Such numbers are quantities which describe a certain
physical system and which are a pure numbers without any
physical units. They are typically defined as products or
ratios of quantities which do have units, in such a way that
all units cancel. Their importance is based on the fact that
two systems, which have the same dimensionless number,
are quite similar to each other.

In practice, the estimation of the measurement errors
is done experimentally. One performs a large number of
identical experiments in identical conditions. The distribu-
tion of the measured values of the quantity under investiga-
tion often gives sufficient information about the measure-
ment errors. Typically this distribution follows the normal
distribution with a certain expected value n and standard
deviation o. They are called the estimators of that distribu-
tion. It is usually the case when the error is a consequence
of many independent factors, none of which dominates the
others. The well-known formula for the normal distribution
is:

(v—u)ZJ

202

For a sufficiently large set of n measurements mean
(average, expected value) u (no matter whether for a nor-
mal distribution or any other one) is estimated as the aver-
age of the measurements:

1 n
pEv="2y
nNis
The expected value v itself is also distributed according
to the normal distribution with standard deviation
o
o, =" .
Jn . The latter value is assumed to be the average

error of the average, while the standard deviation is esti-
mated as:

o= Sv:,/ﬁg,(vi -7)?

Standard deviation is a square root of the variance
var(v), whose formula can be seen under the root sign.
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Variance has a generalization, which is the covariance. Its
formula is as follows:

cov(v, W) = ni_li(vi —V)(W —W)

Covariance is important when one wants to use principal
component analysis PCA. It is an important statistical pro-
cedure, which allows one to reduce the number of attributes
in the data and to discover the most significant relations.
Let us therefore assume that we have a number of vectors
v(s;7),...,»(sy) representing the data, each of length .

Here is the principle of PCA.

* In the first step, for each attribute v;, we replace v,(s) by
the value v;(s)—v; in the whole dataset.

* The second step is to create the covariance matrix,
whose entries are covariances among all the attributes in
the dataset. In column i and row j this matrix has value
cov(v,v)).

* The third step is to compute the eigenvalues and the
corresponding eigenvectors of the covariance matrix.

* Transform the dataset so that the new coordinates are
computed along the eigenvectors. A mathematical prin-
ciple guarantees that the vectors are pairwise perpendi-
cular and can be used to provide an alternative coordi-
nate system for the dataset.

e The larger the modulus of an eigenvalue, the more sig-
nificant is the corresponding eigenvector for the differ-
ences observed in the data. One can often decide to
ignore dimensions corresponding to the eigenvectors for
which the eigenvalues have a very small absolute value,
since they contribute very little to diversity of the data.
This is the method to eliminate, e.g., redundant attrib-
utes, which are highly correlated with other ones.

Most major statistical software systems have PCA
among their standard tools.

An important element of the initial analysis of the data is
the elimination of non-systematic errors. In the case of a
parameter distributed according to the normal distribution
with standard deviation o, the data items suspected to carry
such an error should be those that have extreme values, out-
side of the range for that parameter. They should be elimi-
nated from the dataset. If the dataset consists of a large num-
ber of items, the elimination of such elements can also be
based on a normality test, like the test y2 If the number of
data items is small, Dixon’s Q test can be used. In this test for
an extremal element x,,, suspected of carrying a non-systemat-
ic error, the quantity Q is computed according to the formula

Vn

_Vn—l_
Q="©r"",

where v,_; is the data item closest to v,, R is the range in the
complete dataset (with all the elements included). The
resulting value of Q is compared to the critical values Qg
computed for various significance levels a and cardinalities
n of the dataset. Table 1 summarizes these values for the
first few cardinalities and two often used values of «.

In the datasets characterizing real life objects or phenom-
ena not all of the items carrying a non-systematic error man-
ifest themselves with extreme values of certain attributes, and
hence the statistical analysis of each of the parameters alone
does not allow one to detect such objects. If two or more
parameters are correlated, an unusual combination of values
of those parameters can indicate that at least one of them
carries such an error. A simple example of this situation is the
following: if in a mixture of three substances the relative con-
tent of each of them is determined in an independent meas-
urement, the sum of the obtained values should give 100%),
up to the measurement error. However, if this sum is, let’s
say, 50%, at least one of the values definitely carries a non-
-systematic error, even if each of the measured individual
contents does not stand out among the other measurements.

In general, analyzing concentrations poses one more dif-
ficulty. If the dominating content can occur in concentra-
tions close to 100%, the error cannot have the normal dis-
tribution any more, as the limit for all the results of the
measurements is 100%. In such situations, it is recommend-
ed to transform the results according to the formula

y=arcsinty/x)

On the other extreme of concentrations, they are limited
by the limit of determination Lp. It is based on the probability
a of getting a false positive detection (the substance does not
occur, but is detected) and the probability § of a false nega-
tive detection (the substance does occur, but is not detected).
These values are usually assumed at the level of 0.05.

The impact of the concentration of the detected sub-
stance on the randomized standard deviation RSD of the
results of measurements is given by the Horwitz formula
[Horwitz, 1982]:

RSD = 2(-05106,,C) _ 901508

where C is the relative concentration. Consequently, for the
concentration of 100% RSD is 2%, for 1% RSD is 4%, for
0.1% RSD is 5.6 %, for 1 ppm it is 16% and for 1 ppb it is
45%. The empirical formula of Horwitz has been deter-
mined based on interlaboratory experiments described in
over 6000 reports. The experiments covered a very diverse
spectrum of products, ranging from food, through pharma-
ceuticals, cosmetics, paints, pesticides, to drinking water. It
can be used as a universal method to validate the methods
and analytical procedures used in experiments.

WHEN THE THEORY IS KNOWN

The most comfortable situation is encountered when the
theory governing an experiment is known in advance and
the task reduces to the determination of the involved con-
stants and performing error analysis.

Still the problem is far from being trivial. There are of
course simple theoretical models, for which there is no real
problem in the data analysis. On the other hand, there are
quite difficult ones, like, e.g. the heat transportation model,

TABLE 1. Critical values for the Dixon’s Q test depending on the cardinality » of the dataset and significance levels a.

0, n | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 1 | 12
«=0.05 941 764 8 560 507 468 437 12 39 376
=001 988 889 780 698 637 590 555 527 502 482
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which is governed by a system of non-linear partial differ-
ential equations. It can be easily met in the food technolo-
gy, e.g. when a food item should be heated to reach a pre-
scribed temperature in all of its volume. For such models,
there are serious problems with determining the boundary
conditions, taking the anisotropy and/or inhomogenity of
the item into account, efc. In such circumstances, it may be
well the case that it is easier to adapt and use methods
which do not assume the knowledge of the theory governing
the process, than to apply the theory itself.

If all those difficulties have been overcome, after deriv-
ing the equation, it should be solved, and the solutions ver-
ified experimentally. While the second task is the more
important one, the first can also be automated, at least to a
certain degree. There are software tools, called computer
algebra systems, designed exactly to help in symbolical
mathematical calculations, like solving differential equa-
tions. Among the major systems of this kind one should
name Maple, Mathematica, and MuPAD. All of them have
similar capabilities, and the differences typically reduce to
the user interface organization. Their functionalities can
differ significantly only in the support of some very
advanced mathematical theories. Basic calculus, statistics
and graphical capabilities of all of them are very similar. In
the considered example the equations can be solved exact-
ly, and the solutions can be expressed by closed formulas.
We would like to stress out that modern computer algebra
systems are not difficult in use at all. For a person who
knows what a differential equation is, solving it using Maple

Smoke mass differential equation for an open smoke chamber.
Smoke of density CO and production yield mu per time unit t enters
the chamber; V is the chamber volume and C(t) the density of smoke
in the chamber at time t. Smoke disappears at the rate a.

> EQ1:=diff(C(t),t) = (Mu/V)*CO-(mu/V)*C (t)- (a/V) *C t);

pCO puC(t) oC(t)
Y, Vv Y,

—9 e
EQL=-C(1)=

The symbolic solution of this equation:
> S1:=dsolve({EQ1,C(0)=0});

o
S],':C(t):uCO—e pnCo
n+o L+o

Smoke mass differential equation for a closed smoke chamber. The
symbols have the same meaning as above.
> EQ2:=diff(C(t),t) = (mu/V) *CO-(a/V) *C(t);

uCO o C(t)

)
EQ2.=gC(t)=T v

Again the symbolic solution:

> §2:=dsolve({EQ2,C(0)=0});

uco. e(’%t]u Co

s2:=Ct)=" o

FIGURE 1. Symbolic solutions of differential equations describing
smoke density in an open and a closed smoke chamber, using Maple.

We start the analysis by plotting the some density for some chosen
values of the parameters. op(S1)[2] is an expression which denotes
the function which is the solution, extracted from the substitution
presented by the computer as the solution.

> plot([subs(mu=1,a=1/2,V=3,C0=5, op(51)[2]), subs(mu=1, a=1/2,
V=3, C0=5, op(S2)[2])], t=0..25,legend=["open chamber","closed cham-
ber'] linestyle=[DOT,SOLID]);

104
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closed chamber

It seems from the plot that the smoke densities approach a limit
when time tends to infinity. Now we want to know if it is really the
case and, if so, the limit density of the smoke in each of the chambers.
We must tell the computer assumptions about the constants in order
that it is able to compute the results.

> assume(mu<1, mu>0,a>0,a<1,V>0);
limit(op(S1)[2],t=infinity);limit(op(S2) [2] t=infinity);

u~CO0
u~ 4o~

u~CO0
o~
Indeed, there are limits. (Signs ~ here and in the following expres-
sions remind the user that some assumptions have been made about
the values.) While the first limit density is smaller than CO, the other
is larger than CO. We want to know when the density of smoke in the
closed chamber assumes for the first time the density of the produ-

ced smoke. Therefore we solve the algebraic equation C(t)=CO0:
> T.=solve(op(52)[2]=C0,});

'n(w)w
T=m—

(x~
The value seems quite normal, so we plot its value for a=1/2 (which

is independent of us), as a function of mu and V.
> plot3d(subs(a=1/2,T),mu=0.5..5,V=1..10);

FIGURE 2. Analysis of the solutions of differential equations, found
in Figure 1.
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or Mathematica should not be harder than using a calcula-
tor to do simple statistics of a few numbers.

After making the general comments, let us consider an
example, describing the methods and tools, which may ease
the analysis of the results. Figures 1 and 2 present an exam-
ple session of Maple, in which the differential equations of
Tyszkiewicz [1999] are solved. In that paper, a theoretical
analysis of the process of filling a smoking chamber with
smoke is investigated in two cases: the first is an open cycle
chamber, through which the smoke flows, while the other is
a closed smoke cycle chamber, to which the smoke is recy-
cled after re-heating.

Maple and its relatives are general-purpose programs. Of
course, there is a whole pletora of very specialized ones, which
can be used for calculations within a specific field. An example
might be the HyperChem [1992] program for quantum theory
calculations of intra- and intermolecular interactions. It can be
used for analyzing molecular level interactions between vari-
ous food contents, as demonstrated by Mazurkiewicz [1997].
Of course, number of similar examples from different areas of
food science, using tools from different areas of chemistry,
biology, genetics, physics, etc., could be given.

MACHINE LEARNING

In this and the following section we do not assume that
the theory behind the experiment is known.

A standard method to proceed is then the use of
machine learning methods. This area of computer science is
concerned with the creation of algorithms, whose purpose is
to learn to compute a specific function, based on a number
of training examples, for which the values of the function
are provided. The algorithms then make an internal repre-
sentation of the training examples and the results of the
function. After this learning phase, the algorithm is used
to compute the function for new arguments, which were not
in the training set. Generally, the value of the function is
computed by comparing the argument to the arguments
found in the training set and interpolating, in one form or
another, the values of the function known for those ele-
ments, with the present, previously unknown argument.
Reference works for the whole section are Witten and
Frank [1999], Cichosz [2000] Osowski [2000], and Rut-
kowska et al. [1999].

There exists a large number of subfields in the machine
learning, each devoted to a specific methodology of creating
learning algorithms.

In this paper we use a very simple methodological dis-
tinction between two subfields of machine learning, which
seems to distinguish quite well those methods, which are
routinely used in the chemometry of food science, and
those, which are not.

The first subfield is the group of methodologies in which the
information gathered by the algorithm after the learning phase
is in a human-readable format. In particular, it allows the user
to inspect the data, and possibly modify it to achieve a better
performance of the algorithm. This group of methods is well
represented by applications in food science and technology.

The second subfield is the group of methodologies in
which the information gathered by the algorithm after the
learning phase is in general unreadable for a human, mak-
ing the user completely dependent on the machine. This

group of algorithms seems to have only very few applica-
tions in food science.

In the following two sections we discuss these two class-
es of algorithms.

Learning human-readable information

In most of the cases the task of data analysis can be
reduced to the problem of distinguishing, based on the
result of the measurement, whether the examined sample
has certain property or not. In many cases there is no theo-
ry that tells us how that property depends on the measure-
ment results, or at least no such theory is known to us.
However, there is a whole area of computer science, called
machine learning, devoted to creation of computer algo-
rithms capable of learning on provided examples, how that
property can be decided, given the measurements.

For the purpose of illustration, we describe two such
algorithms here.

The first of them is kNN, which is shorthand for “k near-
est neighbors”. k is a natural number and is a parameter of
the algorithm. It can be set to any odd natural number. In
practical applications, the typical values of k£ are 5 or 7. It
can be used to approximate the value of an attribute a
whose possible values are 0 and 1, only. Its data are vectors
of numbers, of fixed length. In our terminology, each vector
is the sequence v(s)=(v;(s),...,vx(s)) of the values of certain
attributes of the object s. In kNN, each such vector is con-
sidered as an element of the Euclidean space R".

During the first phase the algorithm “learns” the attrib-
ute a in the following way: it is given a large number of vec-
tors: v(s1),...,»(sn), for which the values of the attribute v are
known. These vectors form the knowledge of the algorithm.

In the second phase, the algorithm is supposed to
approximate the value of the attribute v, i.e. for each new
object s the algorithm should output either 0 or 1, given the
vector v(s) as the information about s. The following proce-
dure is used for that:

For each 0=<i=<N the Euclidean distance

. .
o in the space R” is com-

d(V(s).¥(s)) = \/ 2 (% (8) - Y% (9)?
puted.

k among the objects sy,...,sy are selected: those, which
give vectors with the smallest distance to the vector v(s).

If the majority of the selected k objects have value of the
attribute v equal to 0, the algorithm gives the result 0, other-
wise (i.e. the majority of the selected k objects has value of
the attribute v equal to 1), the algorithm gives the result 1.

As an example, consider the (oversimplified) case when
n=2, so the vectors can be drawn on the plane as in Figure 3.

FIGURE 3. Dataset and circles encompassing the k nearest neighbo-
urs of ? for k=5 and k=7.
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Each 1 in the picture is a vector v(s) for an object satis-
fying v(s)=1, and similarly for 0. The question mark ? is the
vector v(s) of an object s whose value of the attribute v is
unknown. If k is 5, then the algorithm gives result 0, as indi-
cated by the inner circle, encompassing the 5 closest sym-
bols, among which there are three 0s and two 1s. With k=7
the algorithm still gives the same answer 0 — inside the outer
circle there are the 7 closest symbols, four of which are Os
and only three 1s.

Observe an important feature of this algorithm: the
result is not only the answer that v(?) is probably 0, but also
an argument why this should be so. In the example, the
argument could be that among the objects s which are most
similar to ?, the majority has value v(s)=1.

The method of (lazy) decision trees is used, exactly as
kNN, to classify an unknown sample, given a set of training
samples, Witten and Frank [1999], Cichosz [2000].

Input: An unknown sample and a set of training sam-
ples.

1. Choose a sensor and a threshold value, split the set of
training samples into two subsets according to whether the
value of that sensor exceeds the threshold or not.

2. Apply the same procedure to the subset in which the
unknown sample falls, according to the value of the chosen
sensor and threshold.

3. Stop splitting when the set of training samples con-
tains samples of one type, only.

4. Classify the unknown sample to be of the type of the
samples in the set.

y 4

»

2

B 4 X

FIGURE 4. Dataset and splits introduced by a lazy decision tree algo-
rithm while attempting to classify ?.

Figure 4 presents an example of a set of values and the
splitting lines.

The crux of the method is the principle how to choose
the sensor and how to set the threshold in point 2 of the
algorithm above. We used the number of pairs with differ-
ent answers that are differentiated by that split to choose
the sensor and threshold. At each stage of the computation,
the optimal choice of sensor and threshold is made, i.e. the
one who guarantees the maximal number of pairs correctly
differentiated.

Assuming that the precise location of the samples is rep-
resented by the top pixel of the number, the picture repre-
sents the splits of the lazy decision tree algorithm makes in
the previous example. The threshold values of the parame-
ters are denoted (in the order the splits are made) «, 5, and

y. As one can see, the result of this algorithm gives is 0,
exactly as in the kNN case.

Observe an important feature of this algorithm: the
result is not only the answer that v(?) is probably 0, but also
an argument, in a human-readable form, why v(?) should be
0. In the example, the argument could be rephrased in nat-
ural language as follows:

e For most of the objects s with v(s)=1 we have y(s)>a
while y(?)<a.

* For all of the (very few) objects s with v(s)=1 and y(s) <«
we have either x(s)<p or x(s)>y, while S <x(?)<y.

e Therefore v(?) should not be 1, i.e., v(?)=0.

Moreover, the decision process can be conveniently rep-
resented in a form of a tree, as in Figure 5 below.

YES

—

‘\,/

YES NO

\

4

FIGURE 5. An example of a lazy decision tree, corresponding to the
dataset on Figure 4.

Fragments of the tree, which are not visited in order to
determine the answer for the present object ? are left
unevaluated. A simple observation leads to the conclusion
that after answering YES to the very first test (or NO to the
second one), we may immediately conclude that v(?)=1.
However, we do not recognize (and neither record) it until
we attempt to classify another object for which y(?)>a. For
each object, only the fragments of the tree, which are nec-
essary for its classification, are computed. This is the differ-
ence between the lazy decision trees (which we consider in
this example) and the classical ones, where all the arcs and
branches of the tree are constructed before any object is
classified. The lazy version is more efficient because it is
often the case that large portions of the full tree correspond
to quite unusual objects of the training set (often due to “fat
errors”). Similar objects are never encountered again, and
hence the lazy tree is quite sufficient for handling them.

The latter method has been used by Maciejak et al
[2003] for detecting the smell of ammonia contaminating
food samples. The data has been provided by an electronic
nose Cyranose 320. The vapor of a sample of food is exam-
ined using an electronic nose. The result of measurement is
a vector of 32 numbers — the resistances of the sensors of the
electronic nose after saturation. The decision should be
made whether or not the sample is polluted with ammonia.

There is no theory of the electronic nose. Its sensors are
tiny polymer blocks, which absorb the vapors and increase
in size. The enlargement is measured by the increase of
their electric resistance. Each of the resistors changes its



An introduction to chemometrics for food science

81

characteristics during its lifetime, as well as senses uncon-
trollable changes in the environment (like, e.g. the smell of
blossoming flowers in the spring or increased concentration
of ozone after a thunderstorm). Most likely the characteris-
tics of particular sensors can differ in two otherwise identi-
cal electronic noses. Consequently, all we can hope for is to
learn how our particular electronic nose reacts on ammonia.

Of course it would be extremely difficult for a human.

Yet another example of a learning algorithm, which
yields human-readable information, is calibration of instru-
ments. We describe it on an example: calibrating a NIR
machine NIRLab N-200 from Biichi Labortechnik AG
[2003]. The main task is to make measurements with the
machine on a number of samples of known characteristics.
Say, if we want to measure the fat content of the samples,
we obtain the infrared spectra of a specially prepared set of
samples by the NIR, and subsequently determine their fat
contents by other laboratory methods, to get the reference
data. Next, a special software system is used for calibrating
the NIR to measure the fat content in the probes.

1. First a sequence of mathematical operations is applied
to the spectra. These may include applications of the
Fast Fourier Transform FFT (this is done always), and
then several other from a rich palette of possibilities,
like computing derivatives of the spectra according to
several available numerical algorithms, applying mathe-
matical transformations like log(x), 1/x, x?, etc., selecting
the most significant fragments of the spectra, efc.

2. The set of the transformed spectra is then split into two
parts. The first one is the reference set.

3. The fat contents in the samples from the second, test set
are estimated by comparing their transformed spectra to
the transformed spectra from the reference set by a pro-
prietary algorithm.

4. A quality measure of the estimations, the so-called
Q-value, is computed based on the estimations and the
known fat contents of the test samples.

5. The procedure is repeated starting from point 1. again,
for a new sequence of mathematical operations.

6. Altogether a large number of sequences of operations is
tested. The one, which gives the highest Q-value,
becomes the calibration, together with the set of refer-
ence samples chosen.

Subsequently, the fat content of new, unknown samples
is calculated by transforming their spectra by that chosen set
of mathematical operations and comparing them to the
analogously transformed spectra from the reference set —
exactly as in point 3. of the above procedure. According to
the information from Buchi, if the Q-value is at least 0.75,
the calibration already qualifies for practical use, and the
values of 0.85 or above promise excellent performance of
the fat estimation.

The question arises, why we are so much interested in
learning information in a form, which is usable for the
human?

The answer is that this gives us several opportunities:

* We may be able to detect and correct non-systematic
errors.

*  We may be able to optimize manually our algorithms,
based on the observation of methods they have learned.
This is so, e.g. with the NIR calibration. According to the
representative of Biichi Labortechnik AG, the compa-

ny’s experts can in many cases calibrate the system
beyond what the software does automatically. Needless
to say, they start from the best calibration obtained by
the machine and, tuning the details of the calibration
process, improve upon that.

* Finally, by analyzing the data gathered by a learning sys-
tem one, at least theoretically, may discover the theory
governing the process.

Learning for the machine

In contrary to the two algorithms described above, there
are learning algorithms, in which, after the training samples
are processed, the knowledge collected by the algorithm is
represented in a form incomprehensible for humans. There
are numerous such methods, only one of which has, to the
best of our knowledge, been used in food technology appli-
cations. We describe two of them in a few words here, with
the hope to point out their existence to the food science and
technology community. Our choice of the presented meth-
ods is based on our personal, subjective feeling which of
them are suitable for applications in this application area.
We think they deserve experimental testing. The special fea-
ture of both technologies is that they come with a solid
mathematical background. It has been namely mathemati-
cally demonstrated, that in simple cases and under mild
additional assumptions, they are guaranteed to discover, in
an automatic way, the optimal solutions to the problems
they are applied to.

Neural networks

This method is the artificial neural networks. An artifi-
cial neural network is a (computer model of a) network of
many simple processors (called neurons or units). These
units are connected by communication channels, which usu-
ally transmit numeric data. The units work only on their
local data (often a single number) and on the inputs they
receive via the connections from their neighbors.

The initial phase is called “training”, when the weights
of connections are adjusted on the basis of data. In other
words, neural networks learn from examples. The knowl-
edge gathered this way is represented in the form of the
channel weights, which is generally useless for humans.
However, if trained carefully, neural networks may exhibit
some ability to generalize their knowledge beyond the train-
ing data, that is, to give approximately correct answers for
new cases that were not used for training.

Genetic algorithms

Genetic algorithms are based on a biological metaphor:
They view learning as a process of competition among a
population of evolving candidate problem solutions. Such
candidates might be sequences of parameters in a linear for-
mula f(vy(s),...v,(s)) for approximating an attribute v(s) by
the combination of the values of other attributes on the
same objects together with abstract descriptions of strate-
gies to choose the optimal measurement points to gather
these data. However, equally well such solutions might be
simple computer programs intended to perform a specified
task. A “fitness” function evaluates each solution on the
training data. The value of “fitness” describes the quality of
the solution, as well as describes its chance to contribute to
the next generation of solutions. Then, through operations
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analogous to mutation and gene transfer in sexual repro-
duction, the algorithm creates a new generation of solu-
tions. This process continues until the solutions achieve the
prescribed level of quality. A computer program simulates
this artificial evolution scenario. After the solutions with
high enough fitness are found in this “artificial evolution”,
they are subsequently used to solve the normal cases. Again,
like in the case of neural networks, the fittest solutions,
which form the knowledge of the algorithm, are often effec-
tive but the algorithm does not provide any evidence why
they behave so well. Therefore this knowledge remains
often incomprehensible to humans.

THREE EXAMPLES

In this section we describe three interesting examples of
food science applications of computer science methods, or
where such methods could have been used.

Growth of bacteria

The aim of the study of Tyszkiewicz et al. [2003] was to
examine the growth of pattern strains: Weisella viridescens
ATCC 12706 and Escherichia coli NCTC 8196, placed on
the surface of slices of luncheon meat in the form of the
inoculum of a determined concentration, during storage in
various temperatures.

The formula below presents the dependence of the log-
arithm of the number of bacteria in one gram (CFU/g) N(¢)
at the time ¢ (counted in days) of sample storing.

N(t) = N, (1—e )

where Ny, is the logarithm of the highest experienced num-
ber of bacteria (CFU/g), K is the constant speed of growth
of bacteria, ¢ is the time counted from the moment of sam-
ple contamination, and ¢, is the “initiation time”, i.e. time
necessary for the development of the tested microorganism
to the initial level of contamination N(¢)=N, for t=0.

The above equation has been derived theoretically at
the assumption that the kinetic process of the growth of
microorganisms is a first order chemical reaction. Under
this assumption, N(7) changes according to the differential
equation

dN(7)
dr

where 7 is the time counted from the beginning of the
growth of bacteria.
The equation after integration shall read as follows

= KNy ~N(@)),

In (N, - N(r))=—Kr+InC,

where In C is an integration constant. If one determines the
constant In C at the boundary condition that for N(0)=0,
one receives the next equation as follows

N(¥) = Ny (1-€7)
which, after substituting r=t+f, gives the initial formula,
which we wanted to derive.

The theoretical findings have been positively verified in
experiments, whose descriptions can be found in the op. cit.
Tyszkiewicz et al. [2003]. The portions of the sliced luncheon
meat, manufactured in the form of sterile preserves were
the subject of the research. The product, after taking out

from cans, was sliced and contaminated on their surfaces
with the inoculum of Weisella viridescens and Escherichia
coli bacteria. The initial numbers N, of bacteria have been
measured as a logarithm of the number of bacteria per one
gram (CFU/g). The slices of luncheon meat, wrapped in the
vacuum plastic bags were stored at a temperature of 2°C, 9
or 11°C and 20°C in the period of 1 to 4 weeks. In the deter-
mined intervals, i.e. after 1, 4, 7-8, 11-12 and 21-25 days the
samples were taken for microbiological tests. The tests
have been repeated twice using luncheon meat of a similar
salt contents 2% NaCl, but of different humidity 68% and
60% and different fat contents 10.5% and 20.0% and thus
of a different brain concentration ranging from 2.9% (1%
repetition) to 3.2% (2" repetition). The data analysis has
led to the determination of the relevant constants for each
of the experiments conducted.

The finding is that the growth of bacteria depends, first
of all, on temperature. In general, the impact of tempera-
ture on the growth of bacteria in the range between the min-
imum growth temperature and thermal death temperature
may be described by the Arrhenius equation, but at the
assumption of the variable energy activation.

The value of the energy of activation for the experimen-
tal data in Joules per kilomol (JkM™!) has been calculated
with the application of the equation given by Loncin [1976]
as follows
| K AlT,-T
K. TR T, xT

w
s

where K,, is a pattern constant for the growth speed deter-
mined for the pattern temperature 7,,, A is the activation
energy, R — the gas constant.

As one can see in this example, we have an interesting
two-layer theory governing the process. First is the growth
of the bacteria itself, described by a simple differential
equation. The second layer is the theory governing the
behaviour of the constants in those equations as a function
of temperature. The theoretical results have been derived
manually, but a substantial reduction of the effort could
have been achieved by using a computer algebra system
(which has been indeed used only for visualization purpos-
es in that paper). Needless to say, the theoretical deriva-
tions have been verified experimentally.

Identification of honeys

Identification of stain and origin of honeys is an inter-
esting example of application of chemometric methods in
food science. A classical method to identify the strain of a
honey is to perform a so-called polynologic analysis, i.e.
microscope observation of the insoluble fraction of honey.
This fraction is to a large extent a mixture of pollens, fungal
spores and algae. Its composition, estimated by manual
counting under a microscope, allows one to determine the
strain of the honey, which can be monofloral or multifloral,
and identify the plants from which the honey has been col-
lected. In order to mechanize and standarize this process,
the method of near infrared spectrometry has been pro-
posed by Piekut et al. [2000], which allows for the identifi-
cation of several main components of honeys, like sugars
investigated by Mates and Bosch-Reig [1997]. The geo-
graphical origin of the honeys can be determined by the
analysis of the elements found in honey. It appears that the
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heavy metals present in the soil show up in the plants, and
consequently also in the honeys made from nectars collect-
ed in that area, see Latorre et al. [2000], Latorre et al. [1999]
and Leita et al. [1996].

A successful attempt to use the fluorescence spectra of
honeys to determine their strain is due to Gebala [2003]. He
has exposed honey samples to monochromatic light, chang-
ing its wavelength from 210 to 650 nm every 10 nm. At the
same time the spectra of the induced fluorescence have
been recorded in the range from 240 to 650 nm. The results
of the experiment were complete spectra, illustrating how
the intensity /; of the fluorescence depends on the wave-
lengths of the source 4,, and the fluorescence Ar. An exam-
ple diagram for the buckwheat (Fagopyrum esculatum)
honey is presented on Figure 6.
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FIGURE 6. Intensity of fluorescence as a function of the inducing light
for buckwheat (Fagopyrum esculatum) honey [after Gebala, 2003].

The maxima of the fluorescence intensity are typically of
wavelength close to the wavelength of the inducing light. It is
therefore possible to move from the two-dimensional spec-
trum to a one-dimensional one, which records the value of /; at
the wavelength A.,=A,,+A1 as a function of 4,. A4 is the offset
and can be in principle chosen arbitrarily, except that the line
defined by A,=4,,+ A should not omit the extrema of ;. Next,
Ggbala op cit. [2003] has collected a large number of spectra
of honeys of different strains and origins. Considering the dif-
ference of each spectrum from the average of all those spectra,
the author has been able to determine characteristic numerical
attributes of these difference spectra. These attributes, after
performing PCA, have been proven to suffice determine the
composition and quality parameters of the honey.

It seems to the authors of the present paper, that an algo-
rithm based on neural networks might be at least equally
successful. First, it might easily analyze the complete two-
-dimensional spectra, as opposed to the reduced, one-
-dimensional ones created by Gebala. Next, it would be able
to deal with them as a whole, rather than with a few chosen
parameters only. Of course, the more data is passed to the
identification algorithm, the better the accuracy of the

method. This approach might therefore lead to a more accu-
rate identification procedure. On the other hand, in one of
the cases Gebala has been able to identify a (fake) linden
honey as a mixture of two other strains. With the neural net-
works algorithm one probably could not make such an infer-
ence. This is the price of using learning algorithms, which
gather knowledge in a format unreadable for humans.

Meatiness of pigs

Estimating the meatiness of fatteners is an important
practical issue. It is also an example of a very effective appli-
cation of modern data analysis methods. The price for pork
carcasses depends on their meat content. Therefore one
needs an objective method to evaluate it. The basic one is
dissection — a destructive one, since after dissection a car-
cass is not a carcass any more. Therefore for a long time a
simple yardstick has been used for measuring the lard thick-
ness in a few specific locations along the backbone. In order
to classify the carcass the results of measurements and the
slaughter weight of the carcass were taken into account.

Only recently modern methods have been introduced to
this field. Based on extensive zoometric data, the spatial dis-
tribution and quantitative dependencies among various tis-
sues of the fattener have been determined. At the same
time, modern instrumental technologies have allowed for
non-destructive measurements of many of those parame-
ters. In particular, the introduction of ultrasound detectors
has had a great impact. They enable fast and reliable multi-
point measurements of the thickness of the skin, fat, con-
nective, bone, and muscle tissues. At present, the instru-
mental methods are already so accurate that the European
Union has introduced a compulsory scheme called EUROP,
which classifies carcasses into meatiness classes, described
by Borzuta [1998]. It is an interesting fact, that this scheme
must have been extended since its introduction. Improved
breeding resulted in fatteners with meatiness over 60%,
unforeseen by the authors of the original scheme. Part of
the scheme is the requirement that all member states intro-
duce approved instrumental methods to classify the carcass-
es. Apart from the instrument itself, the algorithm (or a
mathematical formula), which determines the meatiness, is
also approved by the EU. The accuracy presently required
by the law is that the RSD does not exceed 2.5%. The refer-
ence value is, of course, determined using dissection. To
date, according to the Institute of Meat and Fat Industry in
Warsaw, three instruments have been approved for use in
Poland: SGM, UltraFom 300 and AutoFom. The first two of
them calculate the meatiness using fixed, empirically deter-
mined algebraic formulas involving measurement results.
The last one uses a very interesting methodology. The car-
cass is moved continuously along a U-shape row of ultrason-
ic detectors, which measure the tissue thickness along the
whole carcass on its spinal part and both sides (Figure 7).

The collected data is processed using a neural network
algorithm (which must have been formally approved, too).
This method has demonstrated accuracy substantially better
than the required RSD=<2.5%. In fact, this seems close to
the even theoretical accuracy limit. One must keep in mind
that the reference data is meatiness estimated by the dis-
section method (the law requires that the simplified method
of Markus and Walstra is used), which introduces its own
error. In order to improve the instrumental methods even
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FIGURE 7. The detector placement of the AutoFom meatiness
measurement method.

beyond that limit, a project has been recently discussed to
use computer tomography results as the reference data in
calibrating meatiness estimation procedures, see
Dobrowolski et al. [2003].

SUMMARY

In this paper we have described a few statistical princi-
ples and computer science methods use in chemometry for
data analysis. Some of them are well know and widely used,
some other ones have only isolated applications, and some
have not been used in that field to date. Our hope is that
this description will prompt the researchers and practition-
ers to look at the methods developed in and provided by sta-
tistics and computer science. We have separated those tools
into a few classes:

e Statistical methods, which help in non-systematic error
removal, and control of the systematic errors. Statistics
is also a tool to discover the simplest patterns in the
data, which sometimes suffice already for successful
deployment in practice.

e Computer algebra systems, which are the right aid when
developing or applying an existing mathematical theory
to interpret experimental data. Such systems can play a
similar role for differential equations governing many
natural processes, as calculators for adding rows of
numbers. Computer algebra systems seem to remain rel-
atively unknown in the food science and technology,
while they clearly deserve much greater popularity.

e Learning algorithms, which present the learned knowl-
edge in a form suitable for manual analysis. We
described here the k nearest neighbors and lazy decision
trees techniques. We have also pointed out that auto-
matic calibration of an analytical instrument can be seen
as an application of a learning algorithm.

* Learning algorithms, which present the learned knowl-
edge in a form unsuitable for manual analysis. Our
examples have been neural networks and genetic algo-
rithms, whose popularity in the field is also far below
what one could expect.

*  We have concluded the paper with three examples from
the literature, described in more detail to expose the
applications of automated data analysis techniques, or
the possibilities to do so.

ACKNOWLEDGEMENT
This research was supported by the State Committee for

Scientific Research KBN, grant No. PBZ KBN(020)
P06/1999.

REFERENCES

1. Borzuta K., Studies on usefulness of different methods
of meatiness evaluation for the classification of porcine
carcasses in the EUROP system. Roczn. Inst. Przem.
Migsn. Ttuszez., 1998, 35/2, 5-84 (in Polish).

2. Cichosz, P., Systemy uczace si¢, 2000, WNT (in Polish).

3. Dobrowolski A., Romvari R., Allen P., Branscheid W.,
Horn P, X-Ray computed tomography as an objective
method of measuring the lean content of a pig carcass.
A study in the framework of the European Europigclass
Project. 2003, in: Proceedings of 49" ICoMST Campi-
nas, Brasil, 2003, pp. 371-372.

4. Gebala S., Studia nad wykorzystaniem widm fluorescen-
cyjnych do identyfikacji odmian miodu, 2003, PhD The-
sis, Akademia Morska w Gdyni (in Polish).

5. Horwitz W., Evaluation of analytical methods for regu-
lation of foods and drugs. Anal. Chem., 1982, 54,
67A-T6A.

6. HyperChem Computational Chemistry 1992. Autodesk
Inc.

7. Latorre M., Pena R., Garcia S., Herrero C., Authentica-
tion of Galician (N.W. Spain) honeys by multivariate
techniques based on metal content data. The Analyst,
2000, 125, 307-312.

8. Latorre M., Pena R., Pita C., Botana A., Garcia S., Her-
rero C., Chemometric classification of honeys according
to their type II. Metal content data. Food Chem., 1999,
66, 263-268.

9. Leita L., Muhlbahova G., Ceso S., Barbattini R., Mon-
dini C., Investigation of use of honey bees and honey
bee products to asses heavy metals contamination. Envi-
ronmental Monitoring and Assessment, 1996, 43, 1-9.

10. Loncin M., Génie Industriel Alimentaire. Aspects Fon-
damentaux. 1976, Masson.

11. Maciejak T.R., Kukawska-Tarnawska B., Tyszkiewicz J.,
Tyszkiewicz S., Multisensor odour detection and measu-
rement of polluted food. Pol. J. Food Nutr. Sci., 2003,
12/53, SI1, 45-48.

12. Mates R., Bosch-Reig F., Sugar profiles of Spanish mul-
tifloral honeys. Food Chem., 1997, 60, 33.

13. Mazurkiewicz J., Calculations of intermolecular interac-
tions of D-fructose with the HyperChem available pro-
grams. Pol. J. Food Nutr. Sci., 1997, 6/47, 31-39.

14. Osowski, S., Sieci neuronowe do przetwarzania informa-
cji, 2000, Oficyna Wydawnicza Politechniki Warszaw-
skiej (in Polish).

15. Piekut J., Witkowska A., Borawska M., Hejft R., An
attempt to use spectrophotometric analysis in near
infrared to distinguish honey species. Bromat. Chem.
Toksykol., 2000, 32, 73-78 (in Polish).

16. Rutkowska D., Piliniski M., Rutkowski L., Sieci neuro-
nowe, algorytmy genetyczne i systemy rozmyte, 1999,
PWN (in Polish).

17. Tyszkiewicz S., Kinetics of smoke filling of the smoke
blow chambers with open and closed smoke cycle. The-
oretical reflections on basis of mass balance. Roczn.
Inst. Przem. Migsn. Ttuszcz., 1999, 36, 191-196.

18. Tyszkiewicz S., Murzynowska M., Kitzman P., Moch P,
Borys A., Kinetics of secondary micribial growth during
storage of sliced luncheon meat. 2003, in: Proceedings of
49 ICoMST Campinas, Brasil, 2003, pp. 305-306.



An introduction to chemometrics for food science

85

19. Unique NIR solutions based on the NIRCAL Version
3.0 chemometric software, Biichi Labortechnik, 2003.
20. Witten I.H., Frank E., Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementa-

tion, 1999, Morgan Kaufmann.



86

J. Tyszkiewicz & S. Tyszkiewicz

FINAL REPORT

Title of the research ordered project:

THE METHODOLOGICAL BASES OF THE EVALUATION OF THE QUALITY AND SAFETY OF THE NEW

GENERATION FOOD (PBZ-KBN-020/P06/1999).

Title of the individual project:

Sensoric atmosphere analysis (electronic nose) in application to early detection of critical stages of selected food products

during production and storage.

Institution:

Meat and Fat Research Institute, Jubilerska 4, 01-190 Warsaw, Poland.

Leader:
Prof. dr hab. Stanistaw Tyszkiewicz

Co-workers:

dr inz. A. Borys, dr hab. J. Tyszkiewicz prof. UW, dr P. Kitzman, dr B. Kukawska-Tarnawska, dr inz. H. Makata, mgr M.
Murzynowska, inz. S. GrzeSkiewicz, dr inz. M. Olkiewicz, dr inz. T. Platek.

Key words:

Sensorous analysis of atmosphere, electronic nose, chemical activity, food, production process control, storage, food safety.

SYNTHESIS OF RESULTS

The aim of the project was to create methodological
bases for process manufacturing control or storage of
selected foodstuffs under the application of sensorous sys-
tems comprising “an electronic nose” designed for meat
and edible fat processing. The basic problem is that the set
of sensors must be “educated” relying on programming and
qualification of analyzed impulse or impulses. Special math-
ematical techniques of integration and discrimination of
experimental data exist. The authors of the project pos-
sessed an electronic nose (version Cyranose 320) made by
Cyrano Sciences Inc., USA, designed with the use of poly-
mer sensors reacting in the investigated atmosphere content
via electric resistance changes. This instrument has 32 sen-
sors with various characteristics and this feature allows
obtaining considerably various spectra, peculiar to exam-
ined atmosphere. The principal feature of this apparatus is
its portability, facility in the application under terrain con-
ditions. The drawback of this apparatus is a big sensitivity to
water moisture content in the examined atmosphere and in
the air used for calibration and rinsing after subsequent
measurement exposures. Another defect of an electronic
nose is the instability of sensors, which enforces the need of
frequent teaching activity (recalibration).

The instrument was checked on various objects, repre-
senting specified food products or characteristics conditions
of examined objects and this supported usefulness of instru-
ment to quality identification or to quantitative characteri-
zation of non-complex and reproducible objects (for
instance water solutions of ammonium). Apparatus com-
pletely failed in the case of complex objects with non-repro-
ducible matrix (for instance meat products contaminated
with ammonium).

Considerable reproducible improvement was achieved
after the application of alternative calculation method, not
included in informatic (chemometric) instrumentation, for
instance decsision trees, Rough-Sets or neural networks.

This special technique brought excellent results in quantita-

tive differentiation of two bacterial strains: Escherichia coli

ATCC 700599 and Weisella viridescens ATCC 12706 culti-

vated in microbiological culture beds, then mixed together

in various proportions. Equally good mathematical models
have not been elaborated for more complex matrix (meat)
so far. Reproducibility was also improved by supplementa-
tion of electronic nose with a system to standardization
uptake of air from environment for instrument calibration
and sensors refreshing. The essential element in this system
is a washer with hygrostatic solution or solid state desicator.

The application of the above-mentioned system eliminates

the possibility of instrument transportation and limits the

scope of the application only to laboratory use. Practical
conclusions from the performed experiments pinpoint to
quality investigations of accordance or lack of accordance
with simple reproducible standard. Instrument could be rec-
ommended for detection of contamination with characteris-
tic compounds, for instance with ammonium, with chlorine-
emitting compounds, flavour active disinfectants, efc., in
products or objects, on the whole. It could be possible to
detect undesirable flavours deteriorating the quality of
products, rancid lipids, buming stink or sulphuric com-
pounds (mercaptanes). Attempts to apply Cyranose 320 for
non-destructive examinations of complex flavours in prod-
ucts failed, in contrary to SPMS technique applied simulta-
neously, where the height of individual pics of GC spectrum
depended on the concentration of a given compound.

The future prospects are as follows:

1. Elaboration of techniques and mathematical models
suitable for quantitative differentiation of mixed cul-
tures growing in meat matrix.

2. Model studies of technological processes dealing with
hydrophobic and hydrophilic properties on example of
investigative system based on triacylglycerols.



