Search for Author, Title, Keyword
Evaluation of High Fibers Okara and Soybean Bran as Functional Supplements for Mice with Experimentally Induced Type 2 Diabetes
 
More details
Hide details
Publication date: 2017-12-31
 
Pol. J. Food Nutr. Sci. 2017;67(4):327–337
 
KEYWORDS
ABSTRACT
The objective of this study was to evaluate and compare the anti-diabetic efficacy of feeding diets supplemented with okara and soybean bran to experimentally induced type 2 diabetes ICR mice. While okara and soybean bran are from the same source, there is no performed research comparing the effects of these soybean byproduct on glycemic status. Normal and streptozotocin-induced type 2 diabetic ICR mice were assigned either to a normal diet in the normal control group, a high fat diet only in the diabetic control group, a high fat diet supplemented with 15% okara in the okara group, a high fat diet supplemented with 15% soybean bran in the soybean bran group or a high fat diet supplemented with 0.1% metformin in the metformin group for 8 weeks. The biochemical parameters, the organs relative weights and liver histological structure of mice were determined. Okara was significantly effective in controlling hyperglycemia and improving glucose tolerance. Moreover, the antihyperglycemic effect of okara was broadly comparable with the actions of metformin. Feeding okara and soybean bran caused hypolipidemic effects. In addition, they had a strong cytoprotective effect on hepatocytes. Soybean bran seemed more efficient than okara in alleviating hepatic cell histological changes. Results demonstrated the potential benefit of okara and soybean bran in glycemic control and reducing the risk of type 2 diabetes complications.
 
REFERENCES (49)
1.
Ahmad A., Hayat I., Arif S., Masud T., Khalid N., Ahmed A., Mechanisms involved in the therapeutic effects of soybean (Glycine Max). Int. J. Food Prop., 2014, 17, 1332-1354.
 
2.
Ahmad L., Hassan D., Hemeda H., Antihyperglycemic effects of okara, corn hull and their combination in alloxan induced diabetic rats. World Appl. Sci. J., 2010, 9, 10, 1139-1147.
 
3.
Ajay K., Athiny X., Navin K., Rakesh K., Soybean constituents and their functional benefits. 2011, in: Opportunity, Challenges and Scope of Natural Products in Medicinal Chemistry, (ed. V.K. Tiwari). Research Signpost, Kerala, India, pp. 367-383.
 
4.
Amer N., Effects of soybean seed on glucose levels, lipid profiles and histological structures of the liver in alloxan-induced diabetic albino rats. Tikrit J. Pure Sci., 2012, 17, 1-5.
 
5.
Anderson J.W., Ward K., High-carbohydrate, high-fiber diets for insulin-treated men with diabetes mellitus. Am. J. Clin. Nutr., 1979, 32, 2312-2321.
 
6.
Bardini G., Rotella C.M., Giannini S., Dyslipidemia and diabetes: reciprocal impact of impaired lipid metabolism and Beta-cell dysfunction on micro-and macrovascular complications. Rev. Diabet. Stud., 2012, 9, 82-93.
 
7.
Cani P.D., Daubioul C.A., Reusens B., Remacle C., Catillon G., Delzenne N.M., Involvement of endogenous glucagon-like peptide-1 (7–36) amide on glycaemia-lowering effect of oligofructose in streptozotocin-treated rats. J. Endocrinol., 2005, 185, 457-465.
 
8.
Cannon M., Flenniken A., Track N.S., Demonstration of acute and chronic effects of dietary fibre upon carbohydrate metabolism. Life Sci., 1980, 27, 1397-1401.
 
9.
Chang J.H., Kim M.S., Kim T.W., Lee S.S., Effects of soybean supplementation on blood glucose, plasma lipid levels, and erythrocyte antioxidant enzyme activity in type 2 diabetes mellitus patients. Nutr. Res. Pract., 2008, 2, 152-157.
 
10.
Chen P., Zhang Q., Dang H., Liu X., Tian F., Zhao J., Chen Y., Zhang H., Chen W., Antidiabetic effect of Lactobacillus casei CCFM0412 in high-fat-fed, streptozotocin-induced type 2 diabetic mice. Nutrition, 2014, 30, 1061-1068.
 
11.
Chung S.I., Rico C.W., Kang M.Y., Comparative study on the hypoglycemic and antioxidative effects of fermented paste (doenjang) prepared from soybean and brown rice mixed with rice bran or red ginseng marc in mice fed with high-fat diet. Nutrients, 2014, 6, 4610-4624.
 
12.
Cicek B., Arslan P., Fahretti K., The effects of oligofrutose and polydextrose on metabolic control parameters in type-2 diabetes. Pak. J. Med. Sci., 2009, 25, 573-578.
 
13.
Correia S., Carvalho C., Santos M.S., Seica R., Oliveira C.R., Moreira P.I., Mechanisms of action of metformin in type 2 diabetes and associated complications: an overview. Mini. Rev. Med. Chem., 2008, 8, 1343-1354.
 
14.
Dahlén E.M., Länne T., Engvall J., Lindström T., Grodzinsky E., Nystrom F., Östgren C.J., Carotid intima‐media thickness and apolipoprotein B/apolipoprotein A‐I ratio in middle‐aged patients with type 2 diabetes. Diabet. Med., 2009, 26, 384-390.
 
15.
Dueñas M., Hernández T., Robredo S., Lamparski G., Estrella I., Muñoz R., Bioactive phenolic compounds of soybean (Glycine max cv. Merit): modifications by different microbiological fermentations. Pol. J. Food Nutr. Sci., 2012, 62, 241-250.
 
16.
El Rahman A.M.A., Hypoglycemic and hypolipidemic effect of fenugreek in different forms on experimental rats. World Appl. Sci. J., 2014, 29, 7, 835-841.
 
17.
Han S., Jiao, J., Zhang W., Xu J., Wan Z., Zhang W., Gao X., and Qin L., Dietary fiber prevents obesity-related liver lipotoxicity by modulating sterol-regulatory element binding protein pathway in C57BL/6J mice fed a high-fat/cholesterol diet. Sci. Rep., 2015, 5, 15256.
 
18.
Hannan J.M., Ali L., Rokeya B., Khaleque J., Akhter M., Flatt P.R., Abdel-Wahab Y.H., Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action. Br. J. Nutr., 2007, 97, 514-521.
 
19.
He B., Nohara K., Ajami N.J., Michalek R.D., Tian X., Wong M., Losee-Olson S.H., Petrosino J.F., Yoo S.-H., Shimomura K., Transmissible microbial and metabolomic remodeling by soluble dietary fiber improves metabolic homeostasis. Sci. Rep., 2015, 5, 10604.
 
20.
Hosokawa M., Katsukawa M., Tanaka H., Fukuda H., Okuno S., Tsuda K., Iritani N., Okara ameliorates glucose tolerance in GK rats. J. Clin. Biochem. Nutr., 2016, 58, 216-222.
 
21.
Ismaiel M., Yang H., Min C., Dietary fiber role in type 2 diabetes prevention. Br. Food J., 2016, 118, 961-975.
 
22.
Jin L., Tu J., Jia J., An W., Tan H., Cui Q., Li Z., Drug-repurposing identified the combination of trolox C and cytisine for the treatment of type 2 diabetes. J. Transl. Med., 2014, 12, 153.
 
23.
Kaneto H., Katakami N., Matsuhisa M., Matsuoka T.-A., Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm., 2010, 2010, 453892.
 
24.
Kavey R.-E.W., Allada V., Daniels S.R., Hayman L.L., McCrindle B.W., Newburger J.W., Parekh R.S., Steinberger J., Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the american heart association expert panel on population and prevention science; the councils on cardiovascular disease in the young, epidemiology and prevention, nutrition, physical activity and metabolism, high blood pressure research, cardiovascular nursing, and the kidney in heart disease; and the interdisciplinary working group on quality of care and outcomes research: endorsed by the American Academy of Pediatrics. Circulation, 2006, 114, 2710-2738.
 
25.
Kiehm T.G., Anderson J.W., Ward K., Beneficial effects of a high carbohydrate, high fiber diet on hyperglycemic diabetic men. Am. J. Clin. Nutr., 1976, 29, 895-899.
 
26.
Kim H.-S., Yu O.-K., Byun M.-S., Cha, Y.-S., Okara, a soybean by-product, prevents high-fat diet-induced obesity and improves serum lipid profiles in C57BL/6J mice. Food Sci. Biotechnol., 2016, 25, 607-613.
 
27.
Kim S.M., Rico C.W., Lee S.C., Kang M.Y., Modulatory effect of rice bran and phytic acid on glucose metabolism in high-fat-fed C57BL/6N mice. J. Clin. Biochem. Nutr., 2010, 47, 12-17.
 
28.
Klover P.J., Mooney R.A., Hepatocytes: critical for glucose homeostasis. Int. J. Biochem. Cell. Biol., 2004, 36, 753-758.
 
29.
Lee Y.A., Cho E.J., Yokozawa T., Effects of proanthocyanidin preparations on hyperlipidemia and other biomarkers in mouse model of type 2 diabetes. J. Agric. Food Chem., 2008, 56, 7781-7789.
 
30.
Lemes S.F., Lima F.M., de Almeida A.P.C., Ramalho A.d.F.S., de Lima Reis S.R., Michelotto L.F., Amaya-Farfán J., Carneiro E.M., Boschero A.C., Latorraca M.Q., Nutritional recovery with okara diet prevented hypercholesterolemia, hepatic steatosis and glucose intolerance. Int. J. Food Sci. Nutr., 2014, 65, 745-753.
 
31.
Li F., Zhang Y., Zhong Z., Antihyperglycemic effect of Ganoderma lucidum polysaccharides on streptozotocin-induced diabetic mice. Int. J. Mol. Sci., 2011, 12, 6135-6145.
 
32.
Lim S.-I., Lee B.-Y., Anti-diabetic effect of material fermented using rice bran and soybean as the main ingredient by Bacillus sp. J. Korean Soc. Appl. Biol. Chem., 2010, 53, 222-229.
 
33.
Lu F., Liu Y., Li B., Okara dietary fiber and hypoglycemic effect of okara foods. Bioact. Carbohydr. Diet. Fibre, 2013, 2, 126-132.
 
34.
Madar Z., Effect of brown rice and soybean dietary fiber on the control of glucose and lipid metabolism in diabetic rats. Am. J. Clin. Nutr., 1983, 38, 388-393.
 
35.
Mahalko J.R., Sandstead H.H., Johnson L.K., Inman L.F., Milne D.B., Warner R.C., Haunz E.A., Effect of consuming fiber from corn bran, soy hulls, or apple powder on glucose tolerance and plasma lipids in type II diabetes. Am. J. Clin. Nutr., 1984, 39, 25-34.
 
36.
Moodley K., Joseph K., Naidoo Y., Islam S., Mackraj I., Antioxidant, antidiabetic and hypolipidemic effects of Tulbaghia violacea harv. (wild garlic) rhizome methanolic extract in a diabetic rat model. BMC Complement Altern. Med., 2015, 15, 408.
 
37.
Murotomi K., Umeno A., Yasunaga M., Shichiri M., Ishida N., Koike T., Matsuo T., Abe H., Yoshida Y., Nakajima Y., Oleuropein-rich diet attenuates hyperglycemia and impaired glucose tolerance in type 2 diabetes model mouse. J. Agric. Food Chem., 2015, 63, 6715-6722.
 
38.
Murtaza N., Baboota R.K., Jagtap S., Singh D.P., Khare P., Sarma S.M., Podili K., Alagesan S., Chandra T., Bhutani K., Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice. Br. J. Nutr., 2014, 112, 1447-1458.
 
39.
Nam H., Jung H., Karuppasamy S., Park Y.S., Cho Y.S., Lee J.Y., Seong S.-I., Suh J.G., Anti-diabetic effect of the soybean extract fermented by Bacillus subtilis MORI in db/db mice. Food Sci. Biotechnol., 2012, 21, 1669-1676.
 
40.
Préstamo G., Rupérez P., Espinosa-Martos I., Villanueva M.J., Lasunción M.A., The effects of okara on rat growth, cecal fermentation, and serum lipids. Eur. Food Res. Technol., 2007, 225, 925-928.
 
41.
Schroeder N., Marquart L.F., Gallaher D.D., The role of viscosity and fermentability of dietary fibers on satiety-and adiposity-related hormones in rats. Nutrients, 2013, 5, 2093-2113.
 
42.
Surel O., Couplet B., Influence of the dehydration process on active compounds of okara during its fractionation. J. Sci. Food Agric., 2005, 85, 1343-1349.
 
43.
Teoh S.L., Latiff A.A., Das S., A histological study of the structural changes in the liver of streptozotocin-induced diabetic rats treated with or without Momordica charantia (bitter gourd). Clin. Ter., 2008, 160, 283-286.
 
44.
Tolman K.G., Fonseca V., Dalpiaz A., Tan M.H., Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care, 2007, 30, 734-743.
 
45.
Tucker A.J., Vandermey J.S., Robinson L.E., Graham T.E., Bakovic M., Duncan A.M., Effects of breads of varying carbohydrate quality on postprandial glycaemic, incretin and lipidaemic response after first and second meals in adults with diet-controlled type 2 diabetes. J. Funct. Foods, 2014, 6, 116-125.
 
46.
Villanueva M., Yokoyama W., Hong Y., Barttley G., Rupérez P., Effect of high-fat diets supplemented with okara soybean by-product on lipid profiles of plasma, liver and faeces in syrian hamsters. Food Chem., 2011, 124, 72-79.
 
47.
Xu B.-Q., Yang P., Zhang, Y.-Q., Hypoglycemic activities of lyophilized powder of Gynura divaricata by improving antioxidant potential and insulin signaling in type 2 diabetic mice. Food Nutr. Res., 2015, 59, 29652.
 
48.
Yogo T., Ohashi Kunihiko Terakado Y., Harada Y., Nezu Y., Hara Y., Tagawa M., Kageyama H., Fujisawa T., Influence of dried okara-tempeh on the composition and metabolites of fecal microbiota in dogs. Int. J. Appl. Res. Vet. Med., 2011, 9, 176-183.
 
49.
Zheng J., Shen N., Wang S., Zhao G., Oat beta-glucan ameliorates insulin resistance in mice fed on high-fat and high-fructose diet. Food Nutr. Res., 2013, 57, 22754.
 
 
CITATIONS (7):
1.
Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara
Bo Li, Wei Yang, Yuanyang Nie, Fangfang Kang, H. Goff, Steve Cui
Food Hydrocolloids
 
2.
Edgeworthia gardneri (Wall.) Meisn. water extract improves diabetes and modulates gut microbiota
Zhiwen Zhang, Hongyu Xu, Hui Zhao, Yan Geng, Yilin Ren, Lin Guo, Jinsong Shi, Zhenghong Xu
Journal of Ethnopharmacology
 
3.
Impact of diet restriction in the management of diabetes: evidences from preclinical studies
Pawan Krishan, Onkar Bedi, Monika Rani
Naunyn-Schmiedeberg's Archives of Pharmacology
 
4.
Okara Improved Blood Glucose Level in Vietnamese with Type 2 Diabetes Mellitus
Lieu NGUYEN, Tu NGUYEN, Linh NGUYEN, Sumiko KAMOSHITA, Thao TRAN, Huong LE, Fumio SHIMURA, Shigeru YAMAMOTO
Journal of Nutritional Science and Vitaminology
 
5.
Eurotium Cristatum Fermented Okara as a Potential Food Ingredient to Combat Diabetes
Li Chan, Masaki Takahashi, Pei Lim, Shinya Aoyama, Saneyuki Makino, Ferdinandus Ferdinandus, Shi Ng, Satoshi Arai, Hideaki Fujita, Hong Tan, Shigenobu Shibata, Chi-Lik Lee
Scientific Reports
 
6.
Improving Diet Quality for Chronic Disease Prevention With Okara “Food Waste”
Asuka Suzuki, Jinan Banna
American Journal of Lifestyle Medicine
 
7.
Evolution of okara from waste to value added food ingredient: An account of its bio-valorization for improved nutritional and functional effects
Jing-Yu Feng, Rui Wang, Kiran Thakur, Zhi-Jing Ni, Yun-Yang Zhu, Fei Hu, Jian-Guo Zhang, Zhao-Jun Wei
Trends in Food Science & Technology
 
eISSN:2083-6007
ISSN:1230-0322