Search for Author, Title, Keyword
Optimized Extraction, Microencapsulation, and Stability of Anthocyanins from Ardisia compressa K. Fruit
More details
Hide details
Postgraduate College, Campus Cordoba. Postgraduate in Sustainable Agrifood Innovation. Km 348 carretera Córdoba-Veracruz, 94946, Amatlán de los Reyes, Veracruz, Mexico
National Institute of Forestry, Agriculture and Livestock Research (INIFAP), Experimetal Field Centro Altos de Jalisco, Km 8 carretera Tepatitlán-Lagos de Moreno, Tepatitlán de Morelos, CP 47600 Jalisco, Mexico
New Materials, Center for Research and Advanced Studies (CINVESTAV) of the National Polytechnic Institute, Campus Querétaro, Libramiento Norponiente No. 2000, Fraccionamiento Real de Juriquilla, CP 76230 Santiago de Querétaro, Querétaro, Mexico
Technological Institute of Tlajomulco, Jalisco, Agri-Food processes pilot plant. Km 10 carr. A San Miguel, Cuyutlán, Tlajomulco de Zúñiga, Jalisco, CP 45640, Mexico
Submission date: 2021-01-14
Final revision date: 2021-07-08
Acceptance date: 2021-07-21
Online publication date: 2021-08-20
Publication date: 2021-08-20
Corresponding author
Yolanda Salinas-Moreno   

Food Quality, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Mexico
Pol. J. Food Nutr. Sci. 2021;71(3):299-310
The fruit of Ardisia compresssa K. is called chagalapoli and has a high anthocyanin content, with a profile dominated by malvidin derivatives. The aims of this study were: a) to determine optimal conditions (ethanol concentration, pH, and sonication time) for anthocyanin extraction from chagalapoli fruit (CF) using response surface methodology, b) to perform spray-drying microencapsulation of the anthocyanins using mixtures of polysaccharides (maltodextrin – M and Capsul® – C) as wall materials, and c) to evaluate the stability of microcapsules during storage. Of the variables examined to optimize anthocyanin extraction from CF, only ethanol concentration and pH were significant in the model. The optimal extraction conditions were: 63.5% (v/v) ethanol, pH of 2.0, and sonication time of 30 min, which led to an anthocyanin content of 1545 mg malvidin 3-O-galactoside equivalents/100 g of fresh fruit. The proportion of M/C as the wall materials for microcapsule (MC) preparation did not affect the encapsulation efficiency and anthocyanin retention, but high hygroscopicity was observed in the MC with a high proportion of M. The half-life of the MC ranged from 423 to 519 days, and no effect of wall materials was observed. The color stability of the MC was enhanced by increasing C proportion in wall materials. The high stability of microencapsulated anthocyanins of chagalapoli fruit makes it a suitable option as a food colorant.
V.A.G acknowledges CONACYT, Mexico for a scholarship for her Master Science studies (Registration number: 554465).
AACC (1995). Approved Methods of the American Association of Cereal Chemists, 9th ed. International, St. Paul, MN, Method. 44-19.
Arrazola, G., Herazo, I., Alvis, A. (2014). Anthocyanin microencapsulation of eggplant (Solanum melongena L.) and evaluation of color stability and antioxidant capacity. Información Tecnológica, 25(3), 31-42 (in Spanish; English abstract).
Barros, F.A.R.D., Stringheta, P.C. (2006). Anthocyanin microencapsulation - an alternative to increase its applicability as a food ingredient. Biotecnologia Ciência e Desenvolvimento, 36, 18-24 (in Portuguese; English abstract).
Bendokas, V., Skemiene, K., Trumbeckaite, S., Stanys, V., Passamonti, S., Borutaite, V., Liobikas, J. (2020). Anthocyanins: From plant pigments to health benefits at mitochondrial level. Critical Reviews in Food Science and Nutrition, 60(19), 3352-3365.
Brouillard, R. (1982). Chemical structure of anthocyanins. In P. Markakis (Ed.), Anthocyanins as Food Colors, New York: Academic Press, pp. 1-40.
de Brito, E.S., de Araujo, M.C.P., Alves, R.E., Carkeet, C., Clevidence, B.A. Novotny, J.A. (2007). Anthocyanins present in selected tropical fruits: Acerola, jambolão, jussara, and guajiru. Journal of Agricultural and Food Chemistry, 55(23), 9389-9394.
Escobar-Puentes, A.A., García-Gurrola, A., Rincón, S., Zepeda, A., Martínez-Bustos, F. (2020). Effect of amylose/amylopectin content and succinylation on properties of corn starch nanoparticles as encapsulants of anthocyanins. Carbohydrate Polymers, 250, art. no. 116972.
Fossen, T., Slimestad, R., Andersen, O.M. (2001). Anthocyanins from maize (Zea mays) and reed canary grass (Phalaris arundinacea). Journal of Agricultural and Food Chemistry, 49(5), 2318-2321.
Frascareli, E.C., Silva, V.M., Tonon, R.V., Hubinger, M.D. (2012). Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food and Bioproducts Processing, 90(3), 413-424.
García-Tejeda, Y.V., Salinas-Moreno, Y., Martínez-Bustos, F. (2015). Acetylation of normal and waxy maize starches as encapsulating agents for maize anthocyanins microencapsulation. Food and Bioproducts Processing, 94, 717-726.
Ghafoor, K., Hui, T., Choi, Y. H. (2011). Optimization of ultrasonic-assisted extraction of total anthocyanins from grape peel using response surface methodology. Journal of Food Biochemistry, 35(3), 735-746.
Giusti, M.M., Wrolstad, R.E. (2001). Anthocyanins. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In R.E. Wrolstad (Ed.), Current Protocols in Food Analytical Chemistry. John Wiley & Sons, New York, USA; unit F1.2.1-1.
Giusti, M.M., Wrolstad, R.E. (2003). Acylated anthocyanins from edible sources and their applications in food systems. Biochemical Engineering Journal, 14(3), 217-225.
Idham, Z., Muhamad, I.I., Sarmidi, M.R. (2012). Degradation kinetics and color stability of spray-dried encapsulated anthocyanins from Hibiscus sabdariffa L. Journal of Food Processing Engineering, 35(4), 522-542.
Joaquín-Cruz, E., Dueñas, M., García-Cruz, L., Salinas-Moreno, Y., Santos-Buelga, C., García-Salinas, C. (2015). Anthocyanin and phenolic characterization, chemical composition and antioxidant activity of chagalapoli (Ardisia compressa K.) fruit: A tropical source of natural pigments. Food Research International, 70, 151-157.
Khazaei, K.M., Jafari, S., Ghorbani, M., Kakhki, A.H., Sarfarazi, M. (2016). Optimization of anthocyanin extraction from saffron petals with response surface methodology. Food Analytical Methods, 9, 1993-2001.
Labuza, T.P., Schmidl, M.K. (1985). Accelerated shelf-life testing of foods. Food Technology, 39(9), 57-62.
Li, Y.B., Wu, L., Weng, M.J., Tang, B.S., Lai, P.F., Chen, J.C. (2018). Effect of different encapsulating agent combinations on physicochemical properties and stability of microcapsules loaded with phenolics of plum (Prunus salicina lindl.). Powder Technology, 340, 459-464.
Loksuwan, J. (2007). Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloids, 21(5-6), 928-935.
Luzardo-Ocampo, I., Ramírez-Jiménez, A.K., Yañez, J., Mojica, L., Luna-Vital, D.A. (2021). Technological applications of natural colorants in food systems: A review. Foods, 10(3), art. no. 634.
Mahdavi, S.A., Jafari, S.M., Assadpour, E., Ghorbani, M. (2016). Storage stability of encapsulated barberry's anthocyanin and its application in jelly formulation. Journal of Food Engineering, 181, 59-66.
Moreno, S.Y., Sánchez, G.S., Hernández, D.R., Lobato, N.R. (2005). Characterization of anthocyanin extracts from maize kernels. Journal of Chromatography Science, 43(9), 483-487.
Moser, P., Nicoletti-Telis, V.R., de Andrade Neves, N., García-Romero, E., Gomez-Alonso, S., Hermosín-Gutiérrez, I. (2017). Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food Chemistry, 214, 308-318.
Najafabadi, N.S., Sahari, M.A., Barzegar, M., Esfahani, Z.H. (2020). Role of extraction conditions in the recovery of some phytochemical compounds of the jujube fruit. Journal of Agricultural Science and Technology, 22(2), 439-451.
Norkaew, O., Thitisut, P., Mahatheeranont, S., Pawin, B., Sookwong, P., Yodpitak, S., Lungkaphin, A. (2019). Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food Chemistry, 294, 493-502.
Pedro, A.C., Granato, D., Rosso, N.D. (2016). Extraction of anthocyanins and polyphenols from black rice (Oryza sativa L.) by modeling and assessing their reversibility and stability. Food Chemistry, 191, 12-20.
Righi da Rosa, J., Nunes, G.L., Motta, M.H., Fortes, J.P., Cezimbra-Weis, G.C., Rychecki-Hecktheuer, L.H., Muller, E.I., de Menezes, C.R., Severo da Rosa, C. (2019). Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocolloids, 89, 742-748.
Robert, P., Gorena, T., Romero, N., Sepulveda, E., Chavez, J., Saenz, C. (2010). Encapsulation of polyphenols and anthocyanins from pomegranate (Punica granatum) by spray drying. International Journal of Food Science and Technology, 45(7), 1386-1394.
Rocha, G.A., Fávaro-Trindade, C.S., Ferreira Grosso, C.R. (2012). Microencapsulation of lycopene by spray drying: Characterization, stability and application of microcapsules. Food Bioproducts Processing, 90(1), 37-42.
Rodrigues, S., Fernandes, F.A.N., de Brito, E.S., Sousa, A.D., Narain, N. (2015). Ultrasound extraction of phenolics and anthocyanins from jabuticaba peel. Industrial Crops and Products, 69, 400-407.
Roselló-Soto, E., Galanakis, C.M., Brnčic, M., Orlien, V., Trujillo, F.J., Mawson, R., Barba, F.J. (2015). Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions. Trends in Food Science & Technology, 42(2), 134-149.
Silva, P.I., Stringheta, P.C., Teófilo, R.F., Nolasco de Oliveira, I.R. (2013). Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering, 117(4), 538-544.
Swamy, G.J., Sangamithra, A., Chandrasekar, V. (2014). Response surface modeling and process optimization of aqueous extraction of natural pigments from Beta vulgaris using Box-Behnken design of experiments. Dyes and Pigments, 111, 64-74.
Tarone, A.G., Cazarin, C.B.B., Marostica Junior, M.R. (2020). Anthocyanins: New techniques and challenges in microencapsulation. Food Research International, 133, art. no. 109092.
Tonon, R.V., Brabet, C., Hubinger, M.D. (2010). Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43(3), 907-914.
Tonon, R.V., Brabet, C., Pallet, D., Brat, P., Hubinger, M.D. (2009). Physicochemical and morphological characterization of açai (Euterpe oleracea Mart.) powder produced with different carrier agents. International Journal of Food Science & Technology, 44(10), 1950-1958.
Turchiuli, C., Fuchs, M., Bohin, M., Cuvelier, M.E., Ordonnaud, C., Peyrat-Maillard, M.N., Dumoulin, E. (2005). Oil encapsulation by spray drying and fluidised bed agglomeration. Innovative Food Science and Emerging Technologies, 6(1), 29-35.
Microencapsulation of anthocyanins as natural dye extracted from fruits – A systematic review
Feitosa Fonsêca, Angioletti Louise, de Sousa, Sueli Rodrigues, Barros Regina
Food Chemistry
Effect of coating material on microencapsulated phenolic compounds extracted from agroindustrial ciriguela peel residue
Júnior Silva, Nathalia Silva, Maria Araújo, Attilio Converti, Santos dos, Maria Maciel
Journal of the Science of Food and Agriculture
Journals System - logo
Scroll to top