Search for Author, Title, Keyword
Effect of Quercetin on Bone Mineral Status and Markers of Bone Turnover in Retinoic Acid-Induced Osteoporosis
 
More details
Hide details
Publication date: 2018-06-30
 
Pol. J. Food Nutr. Sci. 2018;68(2):149–162
 
KEYWORDS
ABSTRACT
Retinoic acid-induced osteoporosis (RBM) is one of the most common causes of secondary osteoporosis. This study tested the anti-osteoporetic effect of quercetin in RBM-induced bone loss model (RBM). After 14-day supplementation of 13cRA to induce RBM, rats were administered with quercetin (100 mg/kg) or alendronate (40 mg/kg). We analysed changes in body and uterine weight of animals, femoral geometric characteristics, calcium and phosphorus content, bone weight index, bone hystology, bone mineral density (BMD), markers of bone turnover, lipid peroxidation, glutathione levels and SOD, CAT activity of liver, kidney spleen, and ovary as well as biochemical and haematological variables. In comparison to the control RBM rats, the treatment with quercetin increased bone weight index, BMD, osteocalcin level, femoral geometric characteristics, calcium and phosphorus content in the 13cRA-induced bone loss model. Histological results showed its protective action through promotion of bone formation. According to the results, quercetin could be an effective substitution for alendronate in 13cRA-induced osteoporosis. Good therapeutic potential of quercetin on rat skeletal system is based partly on its antioxidant capacity and estrogenic activity.
 
REFERENCES (45)
1.
Ali A.A., Effect of alendronate sodium (Fosamax) on bone of adult male Sprague dawley rats under glucocorticoids therapy histological and histochemical study. Egypt. J. Histol., 2006, 29, 1, 61-72.
 
2.
Bitto A., Burnett B.P., Polito F., Levy R.M., Marini H., Di Stefano V., Irrera N., Armbruster M.A., Minutoli L., Altavilla D., Squadrito F., Genistein aglycone reverses glucocorticoid-induced osteoporosis and increases bone breaking strength in rats: a comparative study with alendronate. Br. J. Pharmacol., 2009, 156, 1287-1295.
 
3.
Chavassieux P.M., Arlot M.E., Reda C., Wei L., Yates A.J., Meunier P.J., Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J. Clin. Invest., 1997, 100, 1475-1480.
 
4.
Chiang C.H., Huang C.C., Chan W.L., Huang P.H., Chen T.J., Chung C.M., Lin S.J., Chen J.W., Leu H.B., Oral alendronate use and risk of cancer in postmenopausal women with osteoporosis: A nationwide study. J. Bone. Miner. Res., 2012, 27, 1951-1958.
 
5.
Conwell L.S., Chang A.B., Bisphosphonates for osteoporosis in people with cystic fibrosis. Cochrane Database. Syst. Rev., 2012, doi: 10.1002/14651858.CD002010.pub3.
 
6.
Coskun O., Kanter M., Korkmaz A., Oter S., Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol. Res., 2005, 51, 117-123.
 
7.
Coxam V., Phyto-oestrogens and bone health. Proc. Nutr. Soc., 2008, 67, 184-95.
 
8.
Fahmy S.R., Soliman A.M., Oxidative stress as a risk factor of osteoporotic by vitamin A in rats. Aust. J. Basic. Appl. Sci., 2009, 3, 1559-1568.
 
9.
Henning P., Conaway H.H., Lerner U.H., Retinoid receptors in bone and their role in bone remodeling. Front Endocrinol (Lausanne)., 2015, 6:31. doi: 10.3389/fendo.2015.00031. eCollection 2015.
 
10.
Hotchkiss C.E., Latendresse J., Ferguson S.A., Oral treatment with retinoic acid decreases bone mass in rats. Comp. Med., 2006, 56, 502-511.
 
11.
Hozayen W.G., El-Desouky M.A., Soliman H.A., Ahmed R.R., Khaliefa A.K., Antiosteoporotic effect of Petroselinum crispum, Ocimum basilicum and Cichorium intybus L. in glucocorticoid-induced osteoporosis in rats. BMC Complement Altern. Med., 2016, Jun 2; 16, 165, doi: 10.1186/s12906-016-1140-y.
 
12.
Huuskonen J., Arnala I., Olkkonen H., Alhava E., Alendronate influences bending force of femoral diaphysis after orchidectomy in rats. Ann. Chir. Gynaecol., 2001, 90, 109-114.
 
13.
Inoue J., Choi J.M., Yoshidomi T., Yashiro T., Sato R., Quercetin enhances VDR activity, leading to stimulation of its target gene expression in Caco-2 cells. Nutr. Sci. Vitaminol. (Tokyo)., 2010, 56, 326-330.
 
14.
Iwaniec U.T., Turner R.T., Smith B.J., Stoecker B.J., Rust A., Zhang B., Vasu V.T., Gohil K., Cross C.E., Traber M.G., Evaluation of long-term vitamin E insufficiency or excess on bone mass, density, and microarchitecture in rodents. Free. Radic. Biol. Med., 2013, 65, 1209-1214.
 
15.
Johansson S., Melhus H., Vitamin A antagonizes calcium response to vitamin D in man. J. Bone. Miner. Res., 2001, 16, 1899-1905.
 
16.
Johnell O., Kanis J.A., An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int., 2006, 17, 1726–1733.
 
17.
Kneissel M., Studer A., Cortesi R., Susa M., Retinoid-induced bone thinning is caused by subperiosteal osteoclast activity in adult rodents. Bone, 2005, 36, 202-214.
 
18.
Knežević A.H., Dikić D., Lisičić D., Kopjar N., Oršolić N., Karabeg S., Benković V., Synergistic effects of irinotecan and flavonoids on Ehrlich ascites tumour-bearing mice. Basic. Clin. Pharmacol. Toxicol., 2011, 109, 343-349.
 
19.
Liang W., Luo Z., Ge S., Du J., Yang M., Yan M., Ye Z., Luo Z., Oral administration of quercetin inhibits bone loss in rat model of diabetic osteopenia. Eur. J. Pharmacol., 2011, 670, 317-324.
 
20.
Liu R.H., Kang X., Xu L.P., Nian H.L., Yang X.W., Shi H.T., Wang X.J.,.Effects of the combined extracts of Herba epimedii and Fructus ligustri Lucidi on bone mineral content and bone turnover in osteoporotic rats. BMC Complement Altern. Med., 2015 Apr 9, 15, 112, doi: 10.1186/s12906-015-0641-4.
 
21.
Mackinnon E.S., Rao A.V., Josse R.G., Rao L.G., Supplementation with the antioxidant lycopene significantly decreases oxidative stress parameters and the bone resorption marker N-telopeptide of type I collagen in postmenopausal women. Osteoporos. Int., 2011, 22, 1091-1101.
 
22.
Manolagas S.C., Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev., 2009, 21, 115-137.
 
23.
Mukherjee M., Das A.S., Mitra S., Mitra C., Prevention of bone loss by oil extract of garlic (Allium sativum Linn.) in an ovariectomized rat model of osteoporosis. Phytother. Res., 2004, 18, 389-394.
 
24.
Muthusami S., Ramachandran I., Muthusami B., Vasudevan G., Prabhu V., Subramaniam V., Jagadeesan A., Narasimha S., Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clinica. Chimica. Acta, 2005, 360, 81-86.
 
25.
Nowak B., Matuszewska A., Filipiak J., Nikodem A., Merwid-Ląd A., Pieśniewska M., Kwiatkowska J., Grotthus B., Szeląg A.. The negative impact of selective activation of retinoic acid receptors on bone metabolism and bone mechanical properties in rats. Adv. Clin. Exp. Med., 2016, 25, 213-218.
 
26.
Oršolić N., Benković V., Lisičić D., Dikić D., Erhardt J., Knežević A.H., Protective effects of propolis and related polyphenolic/flavonoid compounds against toxicity induced by irinotecan. Med. Oncol., 2010, 27, 1346-1358.
 
27.
Oršolić N., Car N., Quercetin and hyperthermia modulate cisplatin-induced DNA damage in tumor and normal tissues in vivo. Tumour Biol., 2014, 35, 6445-6454.
 
28.
Oršolić N., Gajski G., Garaj-Vrhovac V., Dikić D., Prskalo Z.Š., Sirovina D., DNA-protective effects of quercetin or naringenin in alloxan-induced diabetic mice. Eur. J. Pharmacol., 2011, 656, 110-118.
 
29.
Oršolić N., Goluža E., Đikić D., Lisičić D., Sašilo K., Rođak E., Jeleč Z., Lazarus M.V., Orct T., Role of flavonoids on oxidative stress and mineral contents in the retinoic acid-induced bone loss model of rat. Eur. J. Nutr., 2014, 53, 1217-1227.
 
30.
Oršolić N., Kunštić M., Kukolj M., Gračan R., Nemrava J., Oxidative stress, polarization of macrophages and tumour angiogenesis: Efficacy of caffeic acid. Chem. Biol. Interact., 2016, 256, 111-124.
 
31.
Peng X., Jianfeng Y., Weizhang J., Qiankun C., Xio G., The effect of osteoporotic model rats induced by retinoic acid. Chinese Int. J. Traumatol., 2005, 4, 1-6.
 
32.
Perazzella M.A., Markowitz G.S., Bisphosphonate nephrotoxicity. Kidney Int., 2008, 74, 1385-93.
 
33.
Pitts C.J., Kearns A.E., Update on medications with adverse skeletal effects. Mayo Clin. Proc., 2011, 86, 338-343.
 
34.
Prouillet C., Mazière J.C., Mazière C., Wattel A., Brazier M., Kamel S., Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem. Pharmacol., 2004, 67, 1307-1313.
 
35.
Rohde C.M., Manatt M., Clagett-Dame U., DeLuca H.F., Vitamin A antagonizes the action of vitamin D in rats. J. Nutr., 1999, 129, 2246–2250.
 
36.
Sheweita S.A., Khoshhal K.I., Calcium metabolism and oxidative stress in bone fractures: role of antioxidants. Curr. Drug. Metab., 2007, 8, 519-525.
 
37.
Togari A., Kondo M., Arai M., Matsumoto S., Effects of retinoic acid on bone formation and resorption in cultured mouse calvaria. Gen. Pharmacol., 1991, 22, 287-292.
 
38.
Tsuji M., Yamamoto H., Sato T., Mizuha Y., Kawai Y., Taketani Y., Kato S., Terao J., Inakuma T., Takeda E., Dietary quercetin inhibits bone loss without effect on the uterus in ovariectomized mice. J. Bone. Miner. Metab., 2009, 27, 673-681.
 
39.
Walker-Bone K., Recognizing and treating secondary osteoporosis. Nat. Rev. Rheumatol., 2012, 8, 480-492.
 
40.
Wattel A., Kamel S., Prouillet C., Petit J.P., Lorget F., Offord E., Brazier M., Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF kappa B and AP-1. J. Cell Biochem., 2004, 92, 285-295.
 
41.
Wei M., Yang Z., Li P., Zhang Y., Sse W.C., Anti –osteoporosis activity of naringin in the retinoic acid-induced osteoporosis model. Am. J. Chin. Med., 2007, 35, 663-667.
 
42.
Woo J.T., Nakagawa H., Notoya M., Yonezawa T., Udagawa N., Lee I.S., Ohnishi M., Hagiwara H., Nagai K., Quercetin suppresses bone resorption by inhibiting the differentiation and activation of osteoclasts. Biol. Pharm. Bull., 2004, 27, 504-509.
 
43.
Xu Y.X., Wu C.L., Wu Y., Tong P.J., Jin H.T., Yu N.Z., Xiao L.W., Epimedium-derived flavonoids modulate the balance between osteogenic differentiation and adipogenic differentiation in bone marrow stromal cells of ovariectomized rats via Wnt/β-catenin signal pathway activation. Chin. J. Integr. Med., 2012, 18, 909-917.
 
44.
Yang J., Wu N., Peng J., Yang X., Guo J., Yin S., Wang J., Prevention of retinoic acid-induced osteoporosis in mice by isoflavone-enriched soy protein. J Sci Food Agric., 2016, 96, 331-338.
 
45.
Zhao S., Niu .F, Xu C.Y., Liu Y., Ye L., Bi G.B., Chen L., Tian G., Nie T.H., Diosgenin prevents bone loss on retinoic acid-induced osteoporosis in rats. Irish J. Med. Sci., 2016, 185, 581-587.
 
 
CITATIONS (13):
1.
The Beneficial Effect of Proanthocyanidins and Icariin on Biochemical Markers of Bone Turnover in Rats
Nada Oršolić, Johann Nemrava, Željko Jeleč, Marina Kukolj, Dyana Odeh, Svjetlana Terzić, Rajko Fureš, Tomica Bagatin, Dinko Bagatin
International Journal of Molecular Sciences
 
2.
Circulating serum level of retinoic acid and hip fractures among postmenopausal women
Xiao-Bin Li, Tao Liu, Lei Fan, Qiang Gao, Qiang Peng, Teng Cai, Li-Min Wang
Journal of the American Geriatrics Society
 
3.
The impact of grape proanthocyanidin extract on dexamethasone-induced osteoporosis and electrolyte imbalance
Nabil Hasona, Abdullah Morsi, Abdullah Alghabban
Comparative Clinical Pathology
 
4.
Island rule and bone metabolism in fossil murines from Timor
Justyna Miszkiewicz, Julien Louys, Robin Beck, Patrick Mahoney, Ken Aplin, Sue O’Connor
Biological Journal of the Linnean Society
 
5.
Effects of soybean isoflavone on metabolism of rat osteoblasts and cytokines in vitro
Minan Lu, Kegong Xie, Ke Huang, Xianzhe Lu, Lu Lu, Yu Shi, Yujin Tang
Journal of Food Science
 
6.
Melatonin prevents bone destruction in mice with retinoic acid–induced osteoporosis
Xudong Wang, Tongzhou Liang, Yuanxin Zhu, Jincheng Qiu, Xianjian Qiu, Chengjie Lian, Bo Gao, Yan Peng, Anjing Liang, Hang Zhou, Xiaoming Yang, Zhiheng Liao, Yongyong Li, Caixia Xu, Peiqiang Su, Dongsheng Huang
Molecular Medicine
 
7.
Effect of Propolis on Diet-Induced Hyperlipidemia and Atherogenic Indices in Mice
Nada Oršolić, Jurčević Landeka, Domagoj Đikić, Dunja Rogić, Dyana Odeh, Vedran Balta, Junaković Perak, Svjetlana Terzić, David Jutrić
Antioxidants
 
8.
Quercetin regulates ERα mediated differentiation of BMSCs through circular RNA
Xiaoyun Li, Rumeng Chen, Xiaotong Lei, Panpan Wang, Xiaofeng Zhu, Ronghua Zhang, Li Yang
Gene
 
9.
Oral Administration of Quercetin or Its Derivatives Inhibit Bone Loss in Animal Model of Osteoporosis
Yue-Yue Huang, Zi-Hao Wang, Li-Hui Deng, Hong Wang, Qun Zheng, Oliveira de
Oxidative Medicine and Cellular Longevity
 
10.
The effect of Cornus mas extract consumption on bone biomarkers and inflammation in postmenopausal women: A randomized clinical trial
Naheed Aryaeian, Fatemehsadat Amiri, Seyedeh Rahideh, Jamileh Abolghasemi, Shima Jazayeri, Afsaneh Gholamrezayi, Manijeh Motevalian, Masoud Solaymani‐Dodaran, Mohsen Taghizadeh, Elaheh Heshmati, Shahnaz Rimaz
Phytotherapy Research
 
11.
Role of polyphenols in the metabolism of the skeletal system in humans and animals – a review
Grzegorz Skiba, Stanisława Raj, Monika Sobol, Paweł Kowalczyk, Eugeniusz Grela
Annals of Animal Science
 
12.
Anti-osteoporosis effect and purification of peptides with high calcium-binding capacity from walnut protein hydrolysates
Xiaodong Sun, Shiyan Ruan, Yongliang Zhuang, Liping Sun
Food & Function
 
13.
Chrysin alleviates alteration of bone-remodeling markers in ovariectomized rats and exhibits estrogen-like activity in silico
Sadiyat Ibrahim, Sanusi Mada, Musa Abarshi, Muhammad Tanko, Sanusi Babangida
Human & Experimental Toxicology
 
eISSN:2083-6007
ISSN:1230-0322