Search for Author, Title, Keyword
Enantioselective HS-SPME-GC-MS for Authentication of Natural and Synthetic Strawberry Flavour in Syrups
More details
Hide details
Department of Food Preservation, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technicka 3, 16628 Prague 6, Czech Republic
Karolína Průchová   

Department of Food Preservation, University of Chemistry and Technology Prague, Technická 3, 16628, Prague, Czech Republic
Submission date: 2022-05-30
Final revision date: 2022-07-14
Acceptance date: 2022-07-20
Demand for a reliable distinction of the strawberry flavour naturalness stood in the beginning of this research. An efficient chiral column with CP-Chirasil-Dex CB stationary phase was involved in headspace solid-phase microextraction-gas chromatography-mass spectrometry analysis of strawberry flavour in 6 strawberry cultivars, 7 samples of strawberry flavourings and 14 samples of strawberry syrups to evaluate the authenticity of flavour naturalness and reveal adulteration. Enantiomeric ratios of 8 selected chiral volatiles (methyl 2-methylbutanoate, ethyl 2-methylbutanoate, 2-methylbutanoic acid, linalool, α-ionone, γ-decalactone, γ-undecalactone, δ-dodecalactone) were evaluated. Seven chiral volatiles contributed to the revelation of synthetic origin. γ-Decalactone (enantiomeric ratios: 100∕0, 100∕0, 99∕1, 99∕1, 100∕0, and 99∕1 in strawberries; 100∕0 in 3 natural flavourings; 100∕0 in syrup with natural flavour) was the most contributive indicator of synthetic and natural strawberry flavour, followed by ethyl 2-methylbutanoate (enantiomeric ratios: 0∕100, 5∕95, 5∕95 in 3 natural flavourings, 0∕100 in syrup with natural flavour). The best chiral resolution was observed for α-ionone (RS>4). One syrup supposed to contain only natural strawberry flavouring was suspected to be adulterated regarding nearly racemic ratios of its four crucial chiral volatiles. Investigation of enantiomeric ratios of the unique selection of chiral volatiles and strawberry samples using the CP-Chirasil-Dex CB chiral column wider revealed possibilities for reliable recognition of strawberry flavour naturalness in complex matrices and in food samples in general.
This research was supported from Specific university research – grant No A1_FPBT_2021_004.
Authors declare no conflicts of interest
Bernreuther, A., Bank, J., Krammer, G., Schreier, P. (1991). Multidimensional gas chromatography/mass spectrometry: A powerful tool for the direct chiral evaluation of aroma compounds in plant tissues I. 5‐alkanolides in fruits. Phytochemical Analysis, 2(1), 43-47.
Bernreuther, A., Christoph, N., Schreier, P. (1989). Determination of the enantiomeric composition of γ-lactones in complex natural matrices using multidimensional capillary gas chromatography. Journal of Chromatography A, 481, 363-367.
Bernreuther, A., Schreier, P. (1991). Multidimensional gas chromatography/mass spectrometry: A powerful tool for the direct chiral evaluation of aroma compounds in plant tissues. II. Linalool in essential oils and fruits. Phytochemical Analysis, 2(4), 167-170.
Betzenbichler, G., Huber L., Kräh, S., Morkos, M.-L.K., Siegle, A.F., Trapp, O. (2022). Chiral stationary phases and applications in gas chromatography. Chirality, 34(5), 732-759.
Cagliero, C., Bicchi, C., Cordero, C., Rubiolo, P., Sgorbini, B., Liberto, E. (2012). Fast headspace-enantioselective GC–mass spectrometric-multivariate statistical method for routine authentication of flavoured fruit foods. Food Chemistry, 132(2), 1071-1079.
Cagliero, C., Sgorbini, B., Cordero, C., Liberto, E., Rubiolo, P., Bicchi, C. (2015). Cyclodextrin derivatives as stationary phases for the gc separation of enantiomers in the flavor and fragrance field. In: K.H. Engel, G. Takeoka (Eds.), Importance of Chirality to Flavor Compounds, American Chemical Society, Chapter 2, ACS Symposium Series, 1212, 15-34.
Cagliero, C., Sgorbini, B., Cordero, C., Liberto, E., Rubiolo, P., Bicchi, C. (2017). Enantioselective gas chromatography with cyclodextrin in odorant analysis. In: A. Buettner (Ed.), Springer Handbook of Odor, Springer, Cham, Switzerland, pp. 409-438.
da Silva Rivas, A.C., Lopes, P.M., de Azevedo Barros, M.M., Costa Machado, D.C., Alviano, C.S., Alviano, D.S. (2012). Biological activities of α-pinene and β-pinene enantiomers. Molecules, 17(6), 6305-6316.
de la Peňa Moreno, F., Blanch, G.P., Flores, G., del Castillo, M.L.R. (2010). Development of a method based on on-line reversed phase liquid chromatography and gas chromatography coupled by means of an adsorption–desorption interface for the analysis of selected chiral volatile compounds in methyl jasmonate treated strawberries. Journal of Chromatography A, 1217(7), 1083-1088.
Easson, L.H., Stedman, E. (1933). Studies on the relationship between chemical constitution and physiological action: Molecular dissymmetry and physiological activity. Biochemical Journal, 27(4), 1257-1266.
Engel, K.H. (2020). Chirality: An important phenomenon regarding biosynthesis, perception, and authenticity of flavor compounds. Journal of Agricultural and Food Chemistry, 68(38), 10265-10274.
Fanali, Ch., D’Orazio, G., Gentili, A., Fanali, S. (2019). Analysis of enantiomers in products of food interest. Molecules, 24(6), art. no. 1119.
Gomes da Silva, M.D.R., Cardeal, Z., Marriott, P.J. (2008). Comprehensive two-dimensional gas chromatography: Application to aroma and essential oil analysis. In: H. Tamura, S.E. Ebeler, K.K. Gary, R. Takeoka (Eds.). Food Flavour, American Chemical Society, Washington, DC, pp. 3-24.
Guidance Document on EC Regulation on Flavourings (2019). European Flavour Association. Brussels, Belgium [accessed: 14 February 2022].
Hidalgo, C., Torija, M., Mas, A., Mateo, E. (2013). Effect of inoculation on strawberry fermentation and acetification processes using native strains of yeast and acetic acid bacteria. Food Microbiology, 34(1), 88-94.
Krammer, G.E., Weckerle, B., Brennecke, S., Weber, B., Kindel, G., Ley, J., Hilmer, J.M., Reinders, G., Stöckigt, D., Hammerschmidt, F.J., Ott, F., Gatfield, I., Schmidt, C.O., Bertram, H.J. (2006). Product‐oriented flavor research: Learnings from the past, visions for the future. Molecular Nutrition & Food Research, 50(4-5), 345-350.
Kreck, M., Scharrer, A., Bilke, S., Mosandl, A. (2001). Stir bar sorptive extraction (SBSE)-enantio-MDGC-MS–a rapid method for the enantioselective analysis of chiral flavour compounds in strawberries. European Food Research and Technology, 213(4), 389-394.
Lipkowitz, K.B., Coner, B., Peterson, M.A., Morreale, A. (1997a). Enantioselective binding in gas chromatography: A computational study of chiral selection bypermethyl-β‐cyclodextrin. Journal of Physical Organic Chemistry, 10(5), 311-322.<311::AID-POC871>3.0.CO;2-P.
Lipkowitz, K.B., Coner, R., Peterson, M., Morreale, A., Shackelford, J. (1998). The principle of maximum chiral discrimination: chiral recognition in permethyl-β-cyclodextrin. Journal of Organic Chemistry, 63(3), 732-745.
Lipkowitz, K.B., Pearl, G., Coner, B., Peterson, M.A. (1997b). Explanation of where and how enantioselective binding takes place on permethylated β-cyclodextrin, a chiral stationary phase used in gas chromatography. Journal of the American Chemical Society, 119(3), 600-610.
Marchelli, R., Dossena, A., Palla, G. (1996). The potential of enantioselective analysis as a quality control tool. Trends in Food Science & Technology, 7(4), 113-119.
Menestrina, F., Ronco, N.R., Romero L.M., Castells, C.B. (2018). Enantioseparation of polar pesticides on chiral capillary columns based on permethyl-β-cyclodextrin in matrices of different polarities. Microchemical Journal, 140, 52-59.
Mosandl, A., Hener, U., Hagenauer‐Hener, U., Kustermann, A. (1989). Direct enantiomer separation of chiral γ‐lactones from food and beverages by multidimensional gas chromatography. Journal of High Resolution Chromatography, 12(8), 532-536.
Mosandl, A., Rettinger, K., Fischer, K., Schubert, V., Schmarr, H.G., Maas, B. (1990). Stereoisometric flavor compounds XLI: New applications of permathylated β‐cyclodextrin phasse in chiral CGC analysis. Journal of High Resolution Chromatography, 13(5), 382-385.
Nitz, S., Kollmannsberger, H., Weinreich, B., Drawert, F. (1991). Enantiomeric distribution and 13C/12C isotope ratio determination of γ-lactones: appropriate methods for the difterentiation between natural and non-natural flavours? Journal of Chromatography A, 557, 187-197.
Ravid, U., Elkabetz, M., Zamir, C., Cohen, K., Larkov, O., Aly, R. (2010). Authenticity assessment of natural fruit flavour compounds in foods and beverages by auto‐HS–SPME stereoselective GC–MS. Flavour and Fragrance Journal, 25(1), 20-27.
Rong, S., Yang, S., Li, Q., Cai, B., Guan, S., Wang, J., Zhou, Y., Chen, Y. (2017). Improvement of γ-decalactone production by stimulating the import of ricinoleic acid and suppressing the degradation of γ-decalactone in Saccharomyces cerevisiae. Biocatalysis and Biotransformation, 35(2), 96-102.
Schipilliti, L., Dugo, P., Bonaccorsi, I., Mondello, L. (2011). Headspace-solid phase microextraction coupled to gas chromatography–combustion-isotope ratio mass spectrometer and to enantioselective gas chromatography for strawberry flavoured food quality control. Journal of Chromatography A, 1218(42), 7481–7486.
Schmalzing, D., Jung, M., Mayer, S., Rickert, J., Schurig, V. (1992). Extending the scope of enantiomer separations on Chirasil‐Dex by GLC: Comparison with permethylated β‐cyclodextrin dissolved in OV‐1701. Journal of High Resolution Chromatography, 15(11), 723-729.
Scriba, G.K. (2016). Chiral recognition in separation science – an update. Journal of Chromatography A, 1467, 56-78.
Servais, A.C., Rousseau, A., Dive, G., Frederich, M., Crommen, J., Fillet, M. (2012). Combination of capillary electrophoresis, molecular modelling and nuclear magnetic resonance to study the interaction mechanisms between single-isomer anionic cyclodextrin derivatives and basic drug enantiomers in a methanolic background electrolyte. Journal of Chromatography A, 1232, 59-64.
Sicoli, G., Jiang, Z., Jicsinsky, L., Schurig, V. (2005). Modified linear dextrins (“acyclodextrins”) as new chiral selectors for the gas‐chromatographic separation of enantiomers. Angewandte Chemie International Edition, 44(26), 4092-4095.
Sicoli, G., Pertici, F., Jiang, Z., Jicsinszky, L., Schurig, V. (2007). Gas‐chromatographic approach to probe the absence of molecular inclusion in enantioseparations by carbohydrates. Investigation of linear dextrins (“acyclodextrins”) as novel chiral stationary phases. Chirality: The Pharmacological, Biological, and Chemical Consequences of Molecular Asymmetry, 19(5), 391-400.
Silva, R., Coelho, E., Aguiar, T.Q., Domingues, L. (2021). Microbial biosynthesis of lactones: Gaps and opportunities towards sustainable production. Applied Sciences, 11(18), art. no. 8500.
Uccello-Barretta, G., Vanni, L., Balzano, F. (2010). Nuclear magnetic resonance approaches to the rationalization of chromatographic enantiorecognition processes. Journal of Chromatography A, 1217(7), 928-940.
Vandamme, E.J., Soetaert, W. (2002). Bioflavours and fragrances via fermentation and biocatalysis. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 77(12), 1323-1332.
Werkhoff, P., Brennecke, S., Bretschneider, W., Güntert, M., Hopp, R., Surburg, H. (1993). Chirospecific analysis in essential oil, fragrance and flavor research. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 196(4), 307-328.
Williams, A., Ryan, D., Guasca, A.O., Marriott, P., Pang, E. (2005). Analysis of strawberry volatiles using comprehensive two-dimensional gas chromatography with headspace solid-phase microextraction. Journal of Chromatography B, 817(1), 97-107.
Wu, D., Ma, C., Fan, G.C., Pan, F., Tao, Y., Kong, Y. (2022). Recent advances of the ionic chiral selectors for chiral resolution by chromatography, spectroscopy and electrochemistry. Journal of Separation Science, 45(1), 325-337.
Zellner, B., Bicchi, C., Dugo, P., Rubiolo, P., Dugo, G., Mondello, L. (2008). Linear retention indices in gas chromatographic analysis: a review. Flavour and Fragrance Journal, 23(5), 297-314.