ORIGINAL ARTICLE
Proximate Composition, Mineral Profile and Trypsin-Inhibitory Activity of West African Leafy Vegetables: Influence of Urea Micro-Dosing and Harvest Time
 
More details
Hide details
1
Ecole de Nutrition, des Sciences et Technologies Alimentaires, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, République du Bénin
2
Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
3
Département de Nutrition et Sciences Agro-Alimentaires, Faculté d’Agronomie, Université de Parakou, République du Bénin
4
Laboratoire d’Hydraulique et de Modélisation Environnementale, Faculté d’Agronomie, Université de Parakou, 03 BP 351, Parakou, République du Bénin
5
Laboratoire Société-Environnement, Faculté d’Agronomie, Université de Parakou, BP 27, Parakou, République du Bénin
CORRESPONDING AUTHOR
Modoukpè Imayath Djibril Moussa   

Ecole de Nutrition, des Sciences et Technologies Alimentaires, Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, Benin
Submission date: 2019-12-19
Final revision date: 2020-03-20
Acceptance date: 2020-03-25
Online publication date: 2020-04-17
Publication date: 2020-04-27
 
Pol. J. Food Nutr. Sci. 2020;70(2):179–188
 
KEYWORDS
TOPICS
ABSTRACT
In order to ensure the nutritional quality of leafy vegetables produced under intensive cultivation systems, the proximate composition, mineral profile, and trypsin-inhibitory activity of three priority West African vegetable species (Amaranthus cruentus, Ocimum gratissimum, and Solanum macrocarpon) produced with urea micro-doses (20, 40, and 60 kg/ha) were compared with control leaves raised without urea. Plants were harvested three consecutive times to determine effects on nutrient and trypsin-inhibitory activity. Proximate and mineral compositions were mainly species-dependent (p<0.05) though the 60 kg/ha urea dose produced the significantly (p<0.05) highest moisture content in leaves. Calcium, copper, iron, and zinc contents were significantly (p<0.05) influenced by harvest time and its interaction with vegetable species. Furthermore, trypsin inhibition was significantly (p<0.05) higher for the second and third leaf harvests, which suggests that initial wounding from the first harvest enhanced synthesis of the inhibitor protein molecules
ACKNOWLEDGEMENTS
The authors would like to thank graduate students and other colleagues who worked on the experimental fields that produced the vegetables.
FUNDING
This work was supported by the International Development Research Centre (IDRC) and Global Affairs Canada, through the Canadian International Food Security Research Fund (CIFSRF) Project No. 107983 under IDRC Grant [No. 107983-003].
 
REFERENCES (29)
1.
Adewale, O.B., Onasanya, A., Fadaka, O.A., Iwere, H., Anadozie, S.O., Osukoya, A.O., Olayide, I.I. (2014). In vitro antioxidant effect of aqueous extract of Solanum macrocarpon leaves in rat liver and brain. Oxidants and Antioxidants in Medical Sciences, 3(3), 225–229.
 
2.
Adjatin, A., Dansi, A., Badoussi, E., Sanoussi, A.F., Dansi, M., Azokpota, P., Ahissou, H., Akouegninou, A., Akpagana, K., Sanni, A. (2013). Proximate, mineral and vitamin C composition of vegetable Gbolo [Crassocephalum rubens (Juss. ex Jacq.) S. Moore and C. crepidioides (Benth.) S. Moore] in Benin. International Journal of Biological and Chemical Sciences, 7(1), 319–331.
 
3.
Akinwunmi, O.A., Omotayo, F.O. (2016). Proximate analysis and nutritive values of ten common vegetables in South-West (Yoruba land) Nigeria. Communications in Applied Sciences, 4(2), 79–91.
 
4.
Allen, J.C., Corbitt, A.D., Maloney, K.P., Butt, M.S., Truong, V.D. (2012). Glycemic index of sweet potato as affected by cooking methods. The Open Nutrition Journal, 6(1), 1-11.
 
5.
AOAC (2005). Official Methods of Association of Official Analytical Chemists, 18th ed., Gaithersburg, USA.
 
6.
AOCS (2009). Official Methods and Recommended Practices of American Oil Chemists' Society, 6th ed., Denver, USA.
 
7.
Bergman, C., Gray-Scott, D., Chen, J.J., Meacham, S. (2009). What is next for the Dietary Reference Intakes for bone metabolism related nutrients beyond calcium, phosphorus, magnesium, vitamin D, and fluoride? Critical Reviews in Food Science and Nutrition, 49(2), 136–144.
 
8.
Bvenura, C., Afolayan, A.J. (2014a). Maturity effects on mineral concentration and uptake in Solanum nigrum L. Acta Agriculturae Scandinavica, Section B - Soil and Plant Science, 64(8), 657–665.
 
9.
Bvenura, C., Afolayan, A.J. (2014b). Mineral uptake in Solanum nigrum L. cultivated on fertilizer amended soils of the Eastern Cape, South Africa. Journal of Applied Botany and Food Quality, 87, 220–226.
 
10.
Carvalho, F.M.C., Lima, V.C.O., Costa, I.S., Medeiros, A.F., Serquiz, A.C., Lima, M.C.J.S., Serquiz, R.P., Maciel, B.L.L., Uchôa, A.F., Santos, E.A., Morais, A.H.A. (2016). A trypsin inhibitor from tamarind reduces food intake and improves inflammatory status in rats with metabolic syndrome regardless of weight loss. Nutrients, 8(10), 544–558.
 
11.
Clemente, M., Corigliano, M., Pariani, S., Sanchez-Lopez, E., Sander, V., Ramos-Duarte, V. (2019). Plant serine protease inhibitors: biotechnology application in agriculture and molecular farming. International Journal of Molecular Sciences, 20(6), 1345–1365.
 
12.
Dansi, A., Adjatin, A., Adoukonou-Sagbadja, H., Falade, V., Yedomonhan, H., Odou, D., Dossou, B. (2008). Traditional leafy vegetables and their use in the Benin Republic. Genetic Resources and Crop Evolution, 55(8), 1239–1256.
 
13.
Das, S., Hussain, N., Gogoi, B., Buragohain, A.K., Bhattacharyaa, S.S. (2017). Vermicompost and farmyard manure improves food quality, antioxidant and antibacterial potential of Cajanus cajan (L. Mill sp.) leaves. Journal of the Science of Food and Agriculture, 97(3), 956–966.
 
14.
Djibril Moussa, M.I., Alashi, A.M., Sossa-Vihotogbe, C.N.A., Akponikpe, P.B.I., Djenontin, A.J., Baco, M.N., Akissoé, N.H., Aluko, R.E. (2019a). Inhibition of renin-angiotensin system enzymes by leafy vegetables polyphenol extracts related to fertilizer micro-dosing and harvest time. Acta Horticulturae, 1238, 73–80.
 
15.
Djibril Moussa, M.I, Alashi, A.M., Sossa-Vihotogbé, C.N.A., Akponikpè, P.B.I, Baco, N.M., Djènontin, A.J, Aluko, R.E., Akissoé, N.H. (2019b). Fertilizer micro-dosing and harvesting time of indigenous leafy vegetables affect in vitro antioxidant activities. Journal of Food Bioactives, 6, 118–130.
 
16.
Fonge, B.A., Bechem, E.E., Awo, E.M. (2016). Fertilizer rate on growth, yield, and nutrient concentration of leafy vegetables. International Journal of Vegetable Science, 22(3), 274–288.
 
17.
Jedinak, A., Valachova, M., Maliar, T., Sturdik, E. (2010). Antiprotease activity of selected Slovak medicinal plants. Pharmazie, 65(2), 137–140.
 
18.
Likpètè, D.D., Adjogboto, A., Akponikpe, P.B.I., Djenontin, A.J., Baco, M.N., Sossa-Vihotogbe, C.N.A., Agbossou, E.K. (2019). Water use efficiency of local amaranth as affected by timing and application methods of fertilizer micro-dosing. Acta Horticulturae, 1238, 45–54.
 
19.
Nana, F.W., Hilou, A., Millogo, J.F., Nacoulma, O.G. (2012). Phytochemical composition, antioxidant and xanthine oxidase inhibitory activities of Amaranthus cruentus L. and Amaranthus hybridus L. extracts. Pharmaceuticals, 5(6), 613–628.
 
20.
Patel, S.S., Zaveri, M.N. (2015). Trypsin and protein denaturation inhibitory activity of leaf and root of Justicia gendarussa. Asian Journal of Pharmaceutical Science and Technology, 5(4), 217–223.
 
21.
Pesoti, A.R., Oliveira, B.M., Oliveira, A.C., Pompeu, D.G., Gonçalves, D.B., Marangoni, S., Silva, J.A., Granjeiro, P.A. (2015). Extraction, purification and characterization of inhibitor of trypsin from Chenopodium quinoa seeds. Food Science and Technology, 35(4), 588–597.
 
22.
Sawka, M.N. (2005). Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. Washington, DC, USA, The National Academies Press.
 
23.
Shahwar, D., Raza, M.A., Shafiq-Ur-Rehman, Abbasi, M.A., Atta-Ur-Rahman (2012). An investigation of phenolic compounds from plant sources as trypsin inhibitors. Natural Product Research, 26(12), 1087–1093.
 
24.
Sossa-Vihotogbé, C.N.A., Anihouvi, B.V., Akissoe, H.N., Amadji, L.G., Hounhouigan, D.J. (2013). Effect of organic and mineral fertilization on proximate composition of three leafy vegetables harvested at different periods. International Journal of Biological and Chemical Sciences, 7(1), 271–286.
 
25.
Souza, M.R.M., Pereira, P.R.G., Magalhães, I.P.B., Sediyama, M.A.N., Vidigal, S.M., Milagres, C.S.F., Baracat-Pereira, M.C. (2016). Mineral, protein and nitrate contents in leaves of Pereskia aculeata subjected to nitrogen fertilization. Pesquisa Agropecuária Tropical, 46(1), 43–50.
 
26.
Tovihoudji, P.G., Akponikpè, P.B.I., Agbossou, E.K., Bertin, P., Bielders, C.L. (2017). Fertilizer microdosing enhances maize yields but may exacerbate nutrient mining in maize cropping systems in northern Benin. Field Crops Research, 213, 130–142.
 
27.
Trumbo, P., Yates, A.A., Schlicker, S., Poos, M. (2001). Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Journal of the American Dietetic Association, 101(3), 294–301.
 
28.
Vodouhè, S., Dovoedo, A., Anihouvi, V.B., Tossou, R.C. (2012). Influence du mode de cuisson sur la valeur nutritionnelle de Solanum macrocarpum, Amaranthus hybridus et Ocimum gratissimum, trois légumes-feuilles traditionnels acclimatés au Bénin. International Journal of Biological and Chemical Sciences, 6(5), 1926–1937 (in French; English abstract).
 
29.
Watts, D.L. (2010). HTMA mineral ratios. A brief discussion of their clinical importance. Trace Elements Newsletter, 21, 1–3.
 
eISSN:2083-6007
ISSN:1230-0322