Search for Author, Title, Keyword
Synthesis of Galactosyl Mannitol Derivative Using β-Galactosidase from Kluyveromyces lactis
 
More details
Hide details
Publication date: 2017-03-31
 
Pol. J. Food Nutr. Sci. 2017;67(1):33–39
 
KEYWORDS
ABSTRACT
The purpose of the study was to identify the influence of reactive mixture concentration (23-48 g/100 mL), pH (6.5-9.0), presence of NaCl (0.05-0.25 mol/L) and enzyme dose (2850-28,500 LAU/100 g of lactose) on the synthesis of galactosyl mannitol derivative using β-galactosidase from Kluyveromyces lactis. The use of the enzyme dose ranging from 2850 LAU/100 g of lactose to 11,400 LAU/100 g lactose allowed obtaining gal-mannitol at the level of 21.8% total saccharides; higher doses intensified the product decomposition. An increase in the concentration of the reactive mixture had a positive impact on the quantity of gal-mannitol obtained every single time, i.e. 4.39 g were obtained from 100 mL of 23 g/100 mL solution and over 10 g were obtained from a 48 g/100 mL solution. A relatively low increase in product quantity (by ca. 5%) occurred after the pH was increased from 6.5 to 9.0. The use of NaCl rendered better results. An increase in the maximum content of gal-mannitol in the total sugar by 12.8% was observed at the concentration of 0.25 mol/L.
 
REFERENCES (42)
1.
Bonnin E., Thibault J.-F., Galactooligosaccharide production by transfer reaction of an exogalactanase. Enzyme Microb. Technol., 1996, 19, 99-106.
 
2.
Braga A.R.C., Manera A.P., da Costa Ores J., Sala L., Maugeri F., Kalil S.J., Kinetics and thermal properties of crude and purified β-galactosidase with potential for the production of galactooligosaccharides. Food Technol. Biotechnol., 2003, 51(1), 45-52.
 
3.
Cardelle-Cobas A., Martínez-Villaluenga C., Sanz M.L., Montilla A., Gas chromatographic-mass spectrometric analysis of galactosyl derivatives obtained by the action of two different β-galactosidases. Food Chem., 2009, 114, 1099-1105.
 
4.
Cardelle-Cobas A., Villamiel M., Olano A., Corzo N. Study of galacto-oligosaccharide formation from lactose using Pectinex Ultra SP-L. J. Sci. Food Agr., 2008, 88, 954-961.
 
5.
Del-Val M.I., Hill Jr. C.G., Jiménez-Barbero J., Otero C., Selective enzymatic synthesis of 6′-galactosyl lactose by Pectinex Ultra SP in water. Biotechnol. Lett., 2001, 23, 1921-1924.
 
6.
Del-Val M.I., Otero C., Biphasic aqueous media containing polyethylene glycol for the enzymatic synthesis of oligosaccharides from lactose. Enzyme Microb. Technol., 2003, 33, 118–126.
 
7.
Fischer C., Kleinschmidt T., Synthesis of galactooligosaccharides using sweet and acid whey as a substrate. Int. Dairy J., 2015, 48, 15–22.
 
8.
Fortun Y., Colas B., Lithium chloride effect on phenylethyl-β-D-galactoside synthesis by Aspergillus oryzae β-D-galactosidase in the presence of high lactose concentration. Biotechnol. Lett., 1991, 13, 863-866.
 
9.
Giancomini C., Irazoqui G., Gonzalez P., Batista-Viera F., Brena B.M., Enzymatic synthesis of galactosyl–xylose by Aspergillus oryzae β-galactosidase. J. Mol. Catal. B-Enzym., 2002, 19-20, 159-165.
 
10.
Gobinath D., Prapulla S.G., Permeabilized probiotic Lactobacillus plantarum as a source of β-galactosidase for the synthesis of prebiotic galactooligosaccharides. Biotechnol. Lett., 2014, 36, 153-157.
 
11.
Guerrero C., Vera C., Conejeros R., Illanes A., Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates. Enzyme Microb. Technol., 2015, 70, 9-17.
 
12.
Hansson T., Andersson M., Wehtje E., Adlercreutz P., Influence of water activity on the competition between β-glycosidase-catalysed transglycosylation and hydrolysis in aqueous hexanol. Enzyme Microb. Technol., 2001, 29, 527–534.
 
13.
Irazoqui G., Giacomini C., Batista-Viera F., Brena B.M., Cardelle-Cobas A., Corzo N., Jimeno M.L., Characterization of galactosyl derivatives obtained by transgalactosylation of lactose and different polyols using immobilized β-galactosidase from Aspergillus oryzae. J. Agric. Food. Chem., 2009, 57, 11302-11307.
 
14.
Iwasaki K., Nakajima M., Nakao S., Galacto-oligosaccharide production from lactose by an enzymic batch reaction using β-galactosidase. Process Biochem., 1996, 31, 69-76.
 
15.
Juśkiewicz J., Klewicki R., Zduńczyk Z., Consumption of galactosyl derivatives of polyols beneficially affects cecal fermentation and serum parameters in rats. Nutr. Res., 2006, 26, 531-536.
 
16.
Kim T.-K., Park D.-C., Lee Y.-H., Synthesis of glucosyl-sugar alcohols using glycosyltransferases and structural identification of glucosyl-maltitol. J. Microbiol. Biotechnol., 1997, 7, 310-317.
 
17.
Klewicki R., Effect of selected parameters of lactose hydrolysis in the presence of β-galactosidase from various sources on the synthesis of galactosyl-polyol derivatives. Eng. Life Sci., 2007a, 7, 268-274.
 
18.
Klewicki R., Formation of gal-sorbitol during lactose hydrolysis with β-galactosidase. Food Chem., 2007b, 100, 1196-1201.
 
19.
Klewicki R., Klewicka E., Antagonistic activity of lactic acid bacteria as probiotics against selected bacteria of the Enterobaceriacae family in the presence of polyols and their galactosyl derivatives. Biotechnol. Lett., 2004, 26, 317-320.
 
20.
Kurakake M., Okumura T., Morimoto, Y., Synthesis of galactosyl glycerol from guar gum by transglycosylation of α-galactosidase from Aspergillus sp. MK14. Food Chem., 2015, 172, 150-154.
 
21.
Linden G., Lorient D., New Ingredients in Food Processing. Biochemistry and Agriculture. 1999, Woodhead Publishing, Cambridge, England, pp. 226-231.
 
22.
Lu L., Xu X., Gu G., Jin L., Xiao M., Wang F., Synthesis of novel galactose containing chemicals by β-galactosidase from Enterobacter cloacae B5. Bioresour. Technol., 2010, 101, 6868-6872.
 
23.
Lu L.-l., Xiao M., Li Z., Li Y., Wang F., A novel transglycosylating β-galactosidase from Enterobacter cloacae B5. Process Biochem., 2009, 44, 232-236.
 
24.
Manera A.P., Zabot, G.L., Oliveira J.V., de Oliveira D., Mazutti M.A., Kalil S.J., Treichel H., Maugeri F., Enzymatic synthesis of galactooligosaccharides using pressurised fluids as reaction medium. Food Chem., 2012, 133, 1408-1413.
 
25.
Martínez-Villaluenga C., Cardelle-Cobas A., Corzo N., Olano A., Villamiel M., Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by β-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem., 2008, 107, 258-264.
 
26.
Matsue S., Miyawaki O., Influence of water activity and aqueous solvent ordering on enzyme kinetics of alcohol dehydrogenase, lysozyme, and β-galactosidase. Enzyme Microb. Technol., 2000, 26, 342-347.
 
27.
Nakano H., Kiso T., Okamoto K., Tomita T., Abdul Manan M., Kitahata S., Synthesis of glycosyl glycerol by cyclodextrin glucanotransferases. J. Biosci. Bioeng., 2003, 95, 583-588.
 
28.
Rodriguez-Colinas B., Fernandez-Arrojo L., Ballesteros A.O., Plou F.J., Galactooligosaccharides formation during enzymatic hydrolysis of lactose: Towards a prebiotic-enriched milk. Food Chem., 2014, 145, 388-394.
 
29.
Saarela M., Hallamaa K., Mattila-Sandholm T., Mättö J., The effect of lactose derivatives lactulose, lactitol and lactobionic acid on the functional and technological properties of potentially probiotic Lactobacillus strains. Int. Dairy J., 2003, 13, 291–302.
 
30.
Saha B.C., Racine F.M., Biotechnological production of mannitol and its applications. Appl. Microbiol. Biotechnol., 2011, 89, 879-891.
 
31.
Seki N., Saito H., Lactose as a source for lactulose and other functional lactose derivatives. Int. Dairy J., 2012, 22, 110–115.
 
32.
Sen P., Nath A., Bhattacharjee C., Chowdhury R., Bhattacharya P., Process engineering studies of free and micro-encapsulated β-galactosidase in batch and packed bed bioreactors for production of galactooligosaccharides. Biochem. Eng. J., 2014, 90, 59-72.
 
33.
Sharma P., Sharma B.C., Disaccharides in the treatment of hepatic encephalopathy. Metab. Brain Dis., 2013, 28, 313-320.
 
34.
Shen Q., Yang R., Hua X., Ye F., Wang H., Zhao W., Wang K.: Enzymatic synthesis and identification of oligosaccharides obtained by transgalactosylation of lactose in the presence of fructose using β-galactosidase from Kluyveromyces lactis. Food Chem., 2012, 135, 1547–1554.
 
35.
Shin H.-J., Yang J.-W., Galacto-oligosaccharide production by β-galactosidase in hydrophobic organic media. Biotechnol. Lett., 1994, 16, 1157-1162.
 
36.
Splechtna B., Nguyen T.-H., Steinböck M., Kulbe K.D., Lorenz W., Haltrich D., Production of prebiotic galacto-oligosaccharides from lactose using β-galactosidases from Lactobacillus reuteri. J. Agric. Food. Chem., 2006, 54, 4999-5006.
 
37.
Stevenson D.E., Stanley R.A., Furneaux R.H., Optimization of alkyl β-D-galactopyranoside synthesis from lactose using commercially available β-galactosidases. Biotechnol. Bioeng., 1993, 42, 657-666.
 
38.
Tzortzis G., Goulas A.K., Gibson G.R., Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl. Microbiol. Biotechnol., 2005, 68, 412-416.
 
39.
Wei W., Qi D., Zhao H., Lu Z., Lv F., Bie X., Synthesis and characterisation of galactosyl glycerol by β-galactosidase catalysed reverse hydrolysis of galactose and glycerol. Food Chem., 2013, 141, 3085-3092.
 
40.
Yanahira S., Morita M., Aoe S., Suguri T., Takada Y., Miura S., Nakajima I., Effects of lactitol-oligosaccharides on calcium and magnesium absorption in rats. J. Nutr. Sci. Vitaminol., 1997, 43(1), 123-132.
 
41.
Zhang H., Li W., Rui X., Sun X., Dong M., Lactobacillus plantarum 70810 from Chinese paocai as a potential source of β-galactosidase for prebiotic galactooligosaccharides synthesis. Eur. Food Res. Technol., 2013, 236, 817-826.
 
42.
Zhou Q.Z.K., Chen X.D. Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis. Biochem. Eng. J., 2001, 9, 33–40.
 
 
CITATIONS (6):
1.
An Ultrahigh-Performance Liquid Chromatography–Time-of-Flight Mass Spectrometry Metabolomic Approach to Studying the Impact of Moderate Red-Wine Consumption on Urinary Metabolome
Adelaida Esteban-Fernández, Clara Ibañez, Carolina Simó, Begoña Bartolomé, M. Moreno-Arribas
Journal of Proteome Research
 
2.
Conventional and non-conventional applications of β-galactosidases
Carlos Vera, Cecilia Guerrero, Carla Aburto, Andrés Cordova, Andrés Illanes
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
 
3.
Application of Transgalactosylation Activity of β-Galactosidase from Kluyveromyces lactis for the Synthesis of Ascorbic Acid Galactoside
Aleksandra Wojciechowska, Robert Klewicki, Michał Sójka, Katarzyna Grzelak-Błaszczyk
Applied Biochemistry and Biotechnology
 
4.
Hydrolysis of Lactose and Transglycosylation of Selected Sugar Alcohols by LacA β-Galactosidase from Lactobacillus plantarum WCFS1
Paloma Delgado-Fernandez, Laura Plaza-Vinuesa, Silvia Lizasoain-Sánchez, las de, Rosario Muñoz, María Jimeno, Elisa García-Doyagüez, F. Moreno, Nieves Corzo
Journal of Agricultural and Food Chemistry
 
5.
Active Site Architecture and Reaction Mechanism Determination of Cold Adapted β-d-galactosidase from Arthrobacter sp. 32cB
Maria Rutkiewicz, Anna Bujacz, Marta Wanarska, Anna Wierzbicka-Wos, Hubert Cieslinski
International Journal of Molecular Sciences
 
6.
β-Galactosidase from Kluyveromyces lactis: Characterization, production, immobilization and applications - A review
Albuquerque de, Sousa de, e Gomes, Carlos Neto, Luciana Gonçalves, Roberto Fernandez-Lafuente, Maria Rocha
International Journal of Biological Macromolecules
 
eISSN:2083-6007
ISSN:1230-0322