Search for Author, Title, Keyword
Effect of Water Treatment and Immersion in Calcium Salt Solutions on the Quality of Fruits of Peumo Pink Tomato (Solanum lycopersicum L.) Stored under Cold Conditions
More details
Hide details
Centro de Estudios Postcosecha (CEPOC), Facultad de Ciencias Agronómicas, Universidad de Chile, 8820808, Av. Santa Rosa 11315, La Pintana, Santiago, Chile
Centro de Investigación e Innovación Agroalimentario y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández. Ctra. Beniel, Km 3.2, 03312, Orihuela, Alicante, Spain
Laboratorio de Genómica, Funcional & Bioinformática, Facultad de Ciencias Agronómicas, Universidad de Chile, 8820808, Av. Santa Rosa 11315, La Pintana, Santiago, Chile
Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, 8820808, Av. Santa Rosa 11315, La Pintana, Santiago, Chile
Submission date: 2022-01-17
Final revision date: 2022-05-10
Acceptance date: 2022-05-13
Online publication date: 2022-06-09
Publication date: 2022-06-09
Corresponding author
Victor Hugo Escalona   

Centro de Estudios Postcosecha (CEPOC), Facultad de Ciencias Agronómicas, Universidad de Chile, 8820808, Av. Santa Rosa 11315, La Pintana, Santiago, Chile
Pol. J. Food Nutr. Sci. 2022;72(2):193-202
Tomato is one of the most consumed vegetable crops worldwide. In the break stage, it is perishable, and it has a postharvest life that does not exceed three weeks at 12 to 15°C. The aim of this study was to evaluate the effect of immersion in water and in calcium salt solutions on the metabolism and quality of tomato of traditional Peumo Pink cultivar stored for 28 days at 10ºC plus a simulated trading period of 2 days at 20ºC. Fruits were treated in water at 5, 45 and 60ºC at two immersion times of 1 and 4 min or in 2% solutions of calcium chloride, lactate and propionate at 10 and 45ºC for 4 min. The respiration rate, ethylene production and heat shock protein gene expression as well as firmness, total phenolic content and antioxidant capacity of tomato were determined. Dipping in water at 60°C reduced the loss of firmness and respiratory rate of tomatoes up to 21 days at 10°C + 2 days at 20°C. Treatment in water at 45°C for 4 min and at 60°C for 1 or 4 min stimulated heat shock protein gene expression. However, fruit treated at 60°C for 1 or 4 min showed uneven ripening; hence, the immersion in water at 45°C for 4 min was the most recommended to extend the postharvest life of tomatoes. In turn, the immersion in calcium lactate and propionate solutions at 45°C increased total calcium content and maintained firmness after 28 days at 10°C + 2 days at 20°C. The use of high temperature and calcium salts for dipping would be beneficial to provide the vegetal tissues with calcium and reduce the softening of the tomato after prolonged cold storage.
The authors wish to thank project FIA - PYT-2016-0441 from the Región del Libertador General Bernardo O’Higgins (Chile) for financial support. The authors are grateful to the Spanish Ministry of Science, Innovation and Universities for the national mobility scholarship for professors and senior researchers N° PRX19/00138 granted to Prof. Asunción Amorós.
The authors declare that the study was conducted in absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Aghdam, S.M., Dokhanieh, A.Y., Hassanpour, H., Fard, J.R. (2013). Enhancement of antioxidant capacity of cornelian cherry (Cornus mas) fruit by postharvest calcium treatment. Scientia Horticulturae, 161, 160-164.
Aguayo, E., Escalona, V.H., Artés, F. (2008). Effect of hot water treatment and various calcium salts on quality of fresh-cut ‘Amarillo’ melon. Postharvest Biology and Technology, 47(3), 397-406.
Aguayo, E., Requejo-Jackman, C., Stanley, R., Woolf, A. (2015). Hot water treatment in combination with calcium ascorbate dips increases bioactive compounds and helps to maintain fresh-cut apple quality. Postharvest Biology and Technology, 110, 158-165.
Akbudak, B., Akbudak, N., Seniz, V., Eris, A. (2007). Sequential treatments of hot water and modified atmosphere packaging in cherry tomatoes. Journal of Food Quality, 30(6), 896-910.
Benzie, I.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Analytical Biochemistry, 239(1), 70-76.
Brand–Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology, 28(1), 25-30.
Carvajal, M., Martínez, V., Cerda, A. (1999). Influence of magnesium and salinity on tomato plants grown in hydroponic culture. Journal Plant Nutrition, 22(1), 177-190.
Cruz-Mendívil, A., López-Valenzuela, J., Calderón-Vázquez, C., Vega-García, M., Reyes-Moreno, C., Valdez-Ortiz, A. (2015). Early transcriptional responses to chilling stress in tomato fruit with hot water pre-treatment. Postharvest Biology and Technology, 109, 137-144.
De Freitas, S.T., Mitcham, E.J. (2012). Factors involved in fruit calcium deficiency disorders. Horticultural Revision, 40, 107-146.
Dea, S., Bretch, J.K., Nunes, M.C.N., Baldwin, E.A. (2010). Quality of fresh-cut “Kent” mango slices prepared from hot water or non-hot water-treated fruit. Postharvest Biology and Technology, 56(2), 171-180.
Di Rienzo J.A., Casanoves, F., Balzarini, M.G., González, L., Tablada, M., Robledo, W. (2013). InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
Dorais, M., Ehret, D.L., Papadopoulos, A.P. (2008). Tomato (Solanum lycopersicum L.) health components: from the seed to the consumer. Phytochemistry Reviews, 7, 23-50.
FAOSTAT. 2020. Available at:
Guidi, S., Nanni, M., Polenta, G. (2008). Evaluation of heat stress proteins in fruits subjected to postharvest heat treatments (English). Evaluación de proteínas de estrés térmico en frutos sometidos a tratamientos térmicos en postcosecha (Spanish original title). Instituto Nacional de Tecnología Agropecuaria, p. 5. [].
Lara, I., García, P., Vendrell, M. (2004). Modifications in cell wall composition after cold storage of calcium-treated strawberry (Fragaria × ananassa Duch.) fruit. Postharvest Biology and Technology, 34(3), 331-339.
Li, S., Zhu, B., Pirrello, J., Xu, C., Zhang, B., Bouzayen, M., Chen, K., Grierson, D. (2020). Roles of RiN and ethylene in tomato fruit ripening and ripening-associated traits. New Phytologist, 226(2), 460-475.
Luna-Guzmán, I., Barrett, D.M. (2000). Comparison of calcium chloride and calcium lactate effectiveness in maintaining shelf stability and quality of fresh-cut cantaloupes. Postharvest Biology and Technology, 19(1), 61-72.
Lurie, S., Laamin, M., Lapsker, Z., Fallik, E. (1997). Heat treatments to decrease chilling injury in tomato fruit. Effects in lipids, pericarp lesions and fungal growth. Physiology Plantarum, 100(2), 297-302.
Magee, R.L., Caporaso, F., Prakash, A. (2003). Effects of exogenous calcium salt treatments on inhibiting irradiation–induced softening in diced Roma tomatoes. Journal Food Science, 68(8), 2430-2435.
Mahmud, T.M.M., Al Eryani-Raqeeb, A., Syed Omar, S.R., Mohamed, Z., Abdul-Rahman, A.E. (2008). Effects of different concentrations and applications of calcium on storage life and physicochemical characteristics of papaya (Carica papaya L.). American Journal of Agricultural and Biological Sciences, 3(3), 526-533.
Manganaris, G.A., Vasilakakis, M., Diamantidis, G., Mignani, I. (2005). Effect of calcium additives on physicochemical aspects of cell wall pectin and sensory attributes of canned peach (Prunus persica L. Batsch cv. Andross). Journal of the Science of Food and Agriculture, 85(10), 1773-1778.
Meisel, L., Fonseca, B., González, S., Baeza-Yates, R., Cambiazo, V., Campos, R., Gonzalez, M., Orellana, A., Retamales, J., Silva, H. (2005). A rapid and efficient method for purifying high quality total RNA from peaches (Prunus persica) for functional genomics analyses. Biological Research, 38(1), 83-88.
Nasef, I. (2018). Short hot water as safe treatment induces chilling tolerance and antioxidant enzymes, prevents decay and maintains quality of cold-stored cucumbers. Postharvest Biology and Technology, 138, 1-10.
Naser, F., Rabiei, V., Razavi, F., Khademi, O. (2018). Effect of calcium lactate in combination with hot water treatment on the nutritional quality of persimmon fruit during cold storage. Scientia Horticulturae, 233, 114-123.
Ni, L., Lin, D., Barret, M.D. (2005). Pectin methylesterase catalyzed firming effects of low temperature blanched vegetables. Journal of Food Engineering, 70(4), 546-556.
Nisar, R., Baba, W.N., Masoodi, F.A. (2015). Effect of chemical and thermal treatments on quality parameters and antioxidant activity of apple (pulp) grown in high Himalayan regions. Cogent Food & Agriculture, 1(1), 10-16.
Oms-Oliu, G., Aguiló-Aguayo, I., Soliva-Fortuny, R., Martin-Belloso, O. (2008). Effect of ripeness at processing on fresh-cut “Flor de invierno” pears packaged under modified atmospheres conditions. International Journal of Food Science and Technology, 44(5), 900-909.
Paull, R.E., Chen, N.J. (2000). Heat treatment and fruit ripening. Postharvest Biology and Technology, 21(1), 21–37.
Pinheiro, J., Alegria, C., Abreu, M., Sol, M., Goncalves, E.M., Silva, C.L.M. (2015). Postharvest quality of refrigerated tomato fruit (Solanum Lycopersicum, cv. Zinac) at two maturity stages following heat treatment. Journal of Food Processing and Preservation, 39(6), 697-709.
Polenta, G., Budde, C., Sivakumar, D., Nanni, M., Guidi, S. (2015). Evaluation of biochemical and quality attributes to monitor the application of heat and cold treatments in tomato fruit (Licopersicum esculentum Mill.). Journal of Food Quality, 38(3), 153-163.
Serrano, M., Martínez-Romero, D., Castillo, S., Guillén, F., Valero, D. (2004). Role of calcium and heat treatments in alleviating physiological changes induced by mechanical damage in plum. Postharvest Biology and Technology, 34(2), 155-167.
Silveira, A.C., Aguayo, E., Chisari, M., Artés, F. (2011a). Calcium salts and heat treatment for quality retention of fresh-cut ‘Galia’ melón. Postharvest Biology and Technology, 62(1), 77-84.
Silveira, A.C., Aguayo, E., Escalona, V.H., Artés, F. (2011b). Hot water treatment and peracetic acid to maintain fresh-cut Galia melon quality. Innovative Food Science and Emerging Technologies, 12(4), 569-576.
Silveira, A., Escalona, V.H. (2014). The use of the physical treatment on fresh-cut produce. Stewart Postharvest Review, 10(3), 1-5.
Silveira, A.C., Oyarzún, D., Sepúlveda, A., Escalona, V. (2017). Effect of genotype, raw-material storage time and cut type on native potato suitability for fresh-cut elaboration. Postharvest Biology and Technology, 128, 1–10.
Singleton, V.L., Rossi, A.J. (1965). Colorimetry of total phenolics with phosphomolybdic - phosphotungstic and reagents. American Journal of Enology and Viticulture, 16, 144-157.
Son, K-H., Park, J-H., Kim, D., Oh, M.-M. (2012). Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Korean Journal Horticultural Science & Technology, 30(6), 664-672.
Sun, Q., Zhang, N., Wang, J., Zhang, H., Li, D., Shi, J., Li, R., Weeda, S., Zhao, B., Ren, S., Guo, Y.-D. (2015). Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. Journal of Experimental Botany, 66(3), 657-668.
Swain, T., Hills, W.E. (1959). The phenolic constituents of Prunus domestica. I. The quantitative analysis of phenolic constituents. Journal of the Science of Food and Agriculture, 10(1), 63-68.
Valero, D., Serrano, M. (2010). Postharvest Biology and Technology for Preserving Fruit Quality. 1st edition, CRC Press. Taylor & Francis Group, pp. 109-124.
Wang, C. (1998). Heat treatment affects postharvest quality of kale and collard, but not of brussels sprouts. HortScience, 33, 881-883.
Wang, Y., Xie, X., Long, L. (2014). The effect of postharvest calcium application in hydro cooling water on tissue calcium content, biochemical changes, and quality attributes of sweet cherry fruit. Food Chemistry, 160, 22-30.
Xu, L., Gao, J., Guo, L., Yu, H. (2020). Heat shock protein 70 (HmHsp70) from Hypsizygus marmoreus confers thermotolerance to tobacco. AMB Express, 10, art. no. 12.
Zhang, J., Huang, W., Pan, Q., Liu, Y. (2005). Improvement of chilling tolerance and accumulation of heat shock proteins in grape berries (Vitis vinifera cv. Jingxiu) by heat pretreatment. Postharvest Biology and Technology, 38(1), 80-90.
Zhang, B., Tieman, D.M., Jiao, C., Xu, Y.M., Chan, K.S., Fe, Z.J., Giovannoni, J.J., Klee, H.J. (2016). Chilling-induced tomato flavour is associated with altered volatile synthesis and transient changes in DNA methylation. Proceedings of the National Academy of Sciences of the United States of America, 113(44), 12580-12585.
Zhang, L., Yu, Z., Jiang, L., Jiang, J., Luo, H., Fu, L. (2011). Effect of post-harvest heat treatment on proteome change of peach fruit during ripening. Journal Proteomics, 74(7), 1135-1149.
Zhi, H.H., Liu, Q., Dong, Y., Liu, M., Zong, W. (2017). Effect of calcium dissolved in slightly acidic electrolyzed water on antioxidant system, calcium distribution, and cell wall metabolism of peach in relation to fruit browning. Journal Horticultural Science and Biotechnology, 92(6), 621-629.
Zou, J., Liu, C., Liu, A., Zou, D., Chen, X. (2012). Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. Journal Plant Physiology, 169(6), 628-635.
Journals System - logo
Scroll to top