Search for Author, Title, Keyword
Determination of Saponins in Leaves of Four Swiss Chard (Beta vulgaris L.) Cultivars by UHPLC-CAD/QTOF-MS/MS
More details
Hide details
Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-960 Warsaw, Poland
Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
Agnieszka Mroczek   

Department of Plant Biochemistry, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-960 Warsaw, Poland
Submission date: 2021-01-13
Final revision date: 2021-03-01
Acceptance date: 2021-03-18
Swiss chard is a vegetable valued not only for the taste of its leaves but also because of its health-promoting properties. To date, nothing is known regarding the occurrence of saponins in the Swiss chard plant, even though they could be at least partially responsible for the nutraceutical activities of this plant. This research aimed to describe saponins from the leaves of four Swiss chard (Beta vulgaris L.) cultivars. Saponin structures were analyzed by UHPLC-CAD/QTOF-MS/MS. Based on the fragmentation patterns, we tentatively identified 16 triterpene saponins in B. vulgaris, including two that had not been detected previously. The observed compounds were glycosides of five different, tentatively identified aglycones, i.e., oleanolic acid, hederagenin, gypsogenin, akebonoic acid, and serjanic acid. Moreover, the structure of four saponins detected in Swiss chard leaves included dioxolane-type and six acetal-type substituents. Eleven, eight, eleven, and eight saponins were observed in saponin fractions obtained from Rhubarb, Bulls Blood, Perpetual Spinach, and White Silver cultivars, respectively. Furthermore, the content of all identified triterpene derivatives in the investigated cultivars was estimated using a method based on the UHPLC coupled with QTOF-MS/MS and charged aerosol detector (CAD). The analyzed cultivars differed in the total and individual saponin content. The total saponin content ranged from 125.53 to 397.09 μg/g DW.
This research was partly funded by the Ministry of Science and Higher Education through the Faculty of Biology, University of Warsaw intramural grant DSM nr. 501-D114-86-0117600.
Alara, L.R., Abdurahman, N.H., Ukaegbu, C.I., Azhari, N.H., Kabbashi, N.A. (2018). Metabolic profiling of flavonoids, saponins, alkaloids, and terpenoids in the extract from Vernonia cinerea leaf using LC-Q-TOF-MS. Journal of Liquid Chromatography & Related Technologies, 41, 722-731.
Arslan, I., Cenzano, A.M. (2020). Triterpene saponins in cancer therapy: a review of mode of action. Revista Brasileira de Farmacognosia, 30, 1–6.
Baker, T.R., Regg, B.T. (2018). A multi-detector chromatographic approach for characterization and quantitation of botanical constituents to enable in silico safety assessments. Analytical and Bioanalytical Chemistry, 410, 5143-5154.
Biancardi, E., Panella, L.W., Lewellen, R.T. (2012). History and current importance. In Biancardi, E., Panella, L.W., Lewellen, R.T. (Eds.), Beta maritima. The Origin of Beets, 1st edition, Springer, New York, USA, pp. 1-41.
Foubert, K., Cuyckens, F., Vleeschouwer, K., Theunis, M., Vlietinck, A., Pieters, L., Apers, S. (2010). Rapid quantification of 14 saponins of Maesa lanceolata by UPLC–MS/MS. Talanta, 81, 1258–1263.
Ge, Y-W., Zhu, S., Yoshimatsu, K., Komatsu, K. (2017). MS/MS similarity networking accelerated target profiling of triterpene saponins in Eleutherococcus senticosus leaves. Food Chemistry, 227, 444-452.
Gennari, L., Felletti, M., Blasa, M., Angelino, D., Celeghini, C., Corallini, A., Ninfali, P. (2011). Total extract of Beta vulgaris var. cicla seeds versus its purified phenolic components: antioxidant activities and antiproliferative effects against colon cancer cells. Phytochemical Analysis, 22, 272-279.
Gómez-Caravaca, A.M., Segura-Carretero, A., Fernández-Gutiérrez, A., Caboni, M.F. (2011). Simultaneous determination of phenolic compounds and saponins in qinoa (Chenopodium quinoa Willd) by a liquid chromatography-diode array detection-electrospray ionization-time-of-flight mass spectrometry methodology. Journal of Agricultural and Food Chemistry, 59, 10815-10825.
Górecki, T., Lynen, F., Szucs, R., Sandra, P. (2006). Universal response in liquid chromatography using charged aerosol detection. Analytical Chemistry, 78, 3186-3192.
Hashem, A.N., Soliman, M.S., Hamed, M.A., Swilam, N.F., Lindequist, U., Nawwar, M.A. (2016). Beta vulgaris subspecies cicla var. flavescens (Swiss chard): flavonoids, hepatoprotective and hypolipidemic activities. Pharmazie, 71, 227-232.
Hutchinson, J.P., Li, J., Farrell, W., Groeber, E., Szucs, R., Dicinoski, G., Haddad, P.R. (2010). Universal response model for a corona charged aerosol detector. Journal of Chromatography A, 1217, 7418-7427.
Ivanović, L., Milašević, I., Topalović, A., Ðurović, D., Mugoša, B., Knežević, M., Vrvić, M. (2019). Nutritional and phytochemical content of Swiss chard from Montenegro, under different fertilization and irrigation treatments. British Food Journal, 121, 411-425.
Kawahara, Y., Hoshino, T., Morimoto, H., Shinizu, T., Narukawa, Y., Fuchino, H., Kawahara, N., Kiuchi, F. (2016). LC-MS-based quantification method for Achyranthes root saponins. Journal of Natural Medicines, 70, 102-106.
Kirk, D.D., Rempel, R., Pinkhasov, J., Walmsley, A.M. (2004). Application of Quillaja saponaria extracts as oral adjuvants for plant-made vaccines. Expert Opinion on Biological Therapy, 4, 947−958.
Kohda, H., Tanaka, S., Yamaoka, Y., Ohhara, Y. (1991). Saponins from Amaranthus hypochondriacus. Chemical and Pharmaceutical Bulletin, 39, 2609-2612.
Kowalczyk, M., Pecio, Ł., Stochmal, A., Oleszek, W. (2011). Qualitative and quantitative analysis of steroidal saponins in crude extract and bark powder of Yucca schidigera Roezl. Journal of Agricultural and Food Chemistry, 59, 8058-8064.
Le, A.V., Parks, S.E., Nguyen, M.H., Roach, P.D. (2018). Improving the vanillin-sulphuric acid method for quantifying total saponins. Technologies, 6, art. no. 84.
León-Roque, N., Aguilar-Tuesta, S., Quispe-Neyra, J., Mamani-Navarro, W., Alfaro-Cruz, S., Condezo-Hoyos, L. (2019). A green analytical assay for the quantitation of the total saponins in quinoa (Chenopodium quinoa Willd.) based on macro lens-coupled smartphone. Talanta, 204, 576-585.
Mikołajczyk-Bator, K., Błaszczyk, A., Czyżniejewski, M., Kachlicki, P. (2016a). Characterization and identification of triterpene saponins in the roots of red beet (Beta vulgaris L.) using two HPLC-MS systems. Food Chemistry, 192, 979-990.
Mikołajczyk-Bator, K., Błaszczyk, A., Czyżniejewski, M., Kachlicki, P. (2016b). Identification of saponins from sugar beet (Beta vulgaris) by low and high-resolution HPLC–MS/MS. Journal of Chromatography B, 1029-1030, 36-47.
Mroczek, A. (2015). Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochemistry Reviews, 14, 577-605.
Mroczek, A., Kapusta, I., Janda, B., Janiszowska, W. (2012). Triterpene saponin content in the roots of red beet (Beta vulgaris L.) cultivars. Journal of Agricultural and Food Chemistry, 60, 12397-12402.
Mroczek, A., Kapusta, I., Janda, B., Stochmal, A., Janiszowska, W. (2019). MS/MS and UPLC-MS profiling of triterpenoid saponins from leaves and roots of four red beet (Beta vulgaris L.) cultivars. Phytochemistry Letters, 30, 333-337.
Murakami, T., Matsuda, H., Inadzuki, M., Hirano, K., Yoshikawa, M. (1999). Medical foodstuffs. XVI. Sugar beet. (3): absolute stereostructures of betavulgarosides II and IV hypoglycemic saponins having a unique substituent, from the root of Beta vulgaris L. Chemical and Pharmaceutical Bulletin, 47, 1717-1724.
Nakamura, S., Chen, G., Nakashima, S., Matsuda, H., Pei, Y., Yoshikawa, M. (2010). Brazilian natural medicines. IV. New noroleanane-type triterpene and ecdysterone-typesterol glycosides and melanogenesis inhibitors from the roots of Pfaffiaglomerata. Chemical and Pharmaceutical Bulletin, 58, 690-695.
Ninfali, P., Angelino, D. (2013). Nutritional and functional potential of Beta vulgaris cicla and rubra. Fitoterapia, 89, 188–199.
Onlom, C., Nuengchamnong, N., Phrompittayarat, W., Putalun, W., Waranuch, N., Ingkaninan, K. (2017). Quantification of saponins in Asparagus racemosus by HPLC-Q-TOF-MS/MS. Natural Product Communications, 12(1), 7-10.
Osbourn, A.E. (1996). Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell, 8, 1821−1831.
Podolak, J., Galanty, A., Sobolewska, D. (2010). Saponins as cytotoxic agents: a review. Phytochememistry Reviews, 9, 425-474.
Pyo, Y.H., Lee, T.C., Logendra, L., Rosen, R.T. (2004). Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chemistry, 85, 19-26.
Sparg, S.G., Light, M.E., Van Staden, J. (2004). Biological activities and distribution of plant saponins. The Journal of Ethnopharmacology, 94, 219-243.
Spórna-Kucab, A. E., Wybraniec, S. (2020). High-speed counter-current chromatography in separation and identification of saponins from Beta vulgaris L. cultivar Red Sphere. Polish Journal of Food and Nutrition Sciences, 70(1), 67-74.
Tava, A., Odoardi, M. (1996). Saponins from Medicago spp.:  Chemical characterization and biological activity against insects. In G. Waller, K. Yamasaki (Eds.), Saponins Used in Food and Agriculture, Plenum Press, New York, US, pp. 97−109.
Troszyńska, A. (2004). Non-nutrient bioactive substances in food of plant origin causing bitterness and astirgency. Polish Journal of Food and Nutrition Sciences, 54, 65-73.
Vehovec, T., Obreza, A. (2010). Review of operating principle and applications of the charged aerosol detector. Journal of Chromatography A, 1217, 1549-1556.
Wu, X., Jia, L., Wu, J., Liu, Y., Kang, H., Liu, X., Li, P., He, P., Tu, Y., Li, B. (2019). Simultaneous determination and quantification of triterpene saponins from Camellia sinensis seeds using UPLC-PDA-QTOF-MS/MS. Molecules, 24, art. no. 3794.
Yoshikawa, M., Murakami, T., Kadoya, M., Matsuda, H., Yamahara, J., Muraoka, O., Murakami, N. (1995). Betavulgarosides I, II, III, IV and V hypoglycemic glucuronide saponins from the roots and leaves of Beta vulgaris L. (sugar beet). Chemical Pharmaceutical Bulletin, 41, 1621-1626.
Yoshikawa, M., Murakami, T., Kadoya, M., Yamahara, J., Matsuda, H. (1996). Medical foodstuffs. III. Sugar beet. (1): hypoglycemic oleanolic acid oligoglycosides, betavulgarosides I, II, III, and IV, from the root of Beta vulgaris L. (Chenopodiaceae). Chemical and Pharmaceutical Bulletin, 44, 1212-1217.
Yoshikawa, M., Murakami, T., Kadoya, M., Yamahara, J., Matsuda, H. (1998) Medical foodstuffs. XV. Sugar beet. (2): structures of betavulgarosides V, VI, VII, VIII, IX and X from the roots and leaves of sugar beet (Beta vulgaris L., Chenopodiaceae). Chemical and Pharmaceutical Bulletin, 46, 1758-1763.