Search for Author, Title, Keyword
Diet-Induced Adipocyte Browning
More details
Hide details
Students’ Scientific Society, Poznan University of Medical Sciences, Poland
Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, Poland
Oskar Wojciech Wiśniewski   

Students’ Scientific Society, Poznan University of Medical Sciences, 10 Fredry Street, 61-701, Poznan, Poland
Submission date: 2021-07-08
Final revision date: 2021-10-14
Acceptance date: 2021-10-18
Online publication date: 2021-11-16
Publication date: 2021-11-16
The adipocyte browning process is a phenomenon that consists in the molecular and morphological remodeling of preadipocytes or mature white adipocytes into multilocular beige fat cells expressing thermogenesis-associated genes. Adipocyte browning may occur physiologically, mainly upon cold or exercise stimulation. However, it can also be induced by exogenous compounds, such as drugs or dietary components. Since adipocyte browning is followed by increased energy expenditure, weight loss, and improved metabolic health, it emerges as a novel therapeutic target in the treatment of obesity and obesity-related diseases. In addition, it contributes to the lowering of adipose tissue and systemic inflammation, which are promoted in obese states. Thus, the role of adipocyte browning should be emphasized in the context of a dramatically increasing population of obese individuals. In this paper, we focus on dietary components and general dietary modifications, which may affect adipocyte browning by its stimulation or inhibition. We discuss browning properties of amino acids, carbohydrates, fatty acids, and retinoids, as well as present adipocyte browning potential of the wide range of non-nutrients, including glucosinolates, alkaloids, terpenes and terpenoids, flavonoids and other phenolic compounds. We also demonstrate the influence of edible plant extracts and food ingredient of animal origin on adipose tissue browning. Finally, we analyze browning effects of caloric restriction, intermittent fasting and various dietary macronutrient compositions, as well as the significance of microbiota in adipocyte browning process.
The authors thank Ms. Malwina Malinowska for writing assistance.
The publication of this review paper was funded from the budget of Vice-Rector for Student Affairs at Poznan University of Medical Sciences (ID: 4317).
Andrade, J.E., Twaddle, N.C., Helferich, W.G., Doerge, D.R. (2010). Absolute bioavailability of isoflavones from soy protein isolate-containing food in female BALB/c mice. Journal of Agricultural and Food Chemistry, 58(7), 4529–4536.
Andrade, J.M.O., Barcala-Jorge, A.S., Batista-Jorge, G.C., Paraíso, A.F., Freitas, K.M. de, Lelis, D. de F., Guimarães, A.L.S., de Paula, A.M.B., Santos, S.H.S. (2019). Effect of resveratrol on expression of genes involved thermogenesis in mice and humans. Biomedicine & Pharmacotherapy, 112, art. no. 108634.
Angeloni, C., Malaguti, M., Barbalace, M.C., Hrelia, S. (2017). Bioactivity of olive oil phenols in neuroprotection. International Journal of Molecular Sciences, 18(11), art. no. E2230.
Arai, C., Arai, N., Arai, S., Yoshizane, C., Miyata, S., Mizote, A., Suyama, A., Endo, S., Ariyasu, T., Mitsuzumi, H., Ushio, S. (2019). Continuous intake of trehalose induces white adipose tissue browning and enhances energy metabolism. Nutrition & Metabolism, 16, art. no. 45.
Arias, N., Picó, C., Teresa Macarulla, M., Oliver, P., Miranda, J., Palou, A., Portillo, M.P. (2017). A combination of resveratrol and quercetin induces browning in white adipose tissue of rats fed an obesogenic diet. Obesity (Silver Spring, Md.), 25(1), 111–121.
Assini, J.M., Mulvihill, E.E., Burke, A.C., Sutherland, B.G., Telford, D.E., Chhoker, S.S., Sawyez, C.G., Drangova, M., Adams, A.C., Kharitonenkov, A., Pin, C.L., Huff, M.W. (2015). Naringenin prevents obesity, hepatic steatosis, and glucose intolerance in male mice independent of fibroblast growth factor 21. Endocrinology, 156(6), 2087–2102.
Baba, S., Osakabe, N., Yasuda, A., Natsume, M., Takizawa, T., Nakamura, T., Terao, J. (2000). Bioavailability of (–)-epicatechin upon intake of chocolate and cocoa in human volunteers. Free Radical Research, 33(5), 635–641.
Baboota, R.K., Singh, D.P., Sarma, S.M., Kaur, J., Sandhir, R., Boparai, R.K., Kondepudi, K.K., Bishnoi, M. (2014). Capsaicin induces “brite” phenotype in differentiating 3T3-L1 preadipocytes. PLoS One, 9(7), art. no. e103093.
Bai, W., Shen, J., Zhu, Y., Men, Y., Sun, Y., Ma, Y. (2015). Characteristics and kinetic properties of L-rhamnose isomerase from Bacillus subtilis by isothermal titration calorimetry for the production of D-allose. Food Science and Technology Research, 21(1), 13–22.
Bargut, T.C.L., Martins, F.F., Santos, L.P., Aguila, M.B., Mandarim-de-Lacerda, C.A. (2019). Administration of eicosapentaenoic and docosahexaenoic acids may improve the remodeling and browning in subcutaneous white adipose tissue and thermogenic markers in brown adipose tissue in mice. Molecular and Cellular Endocrinology, 482, 18–27.
Bargut, T.C.L., Silva-e-Silva, A.C.A.G., Souza-Mello, V., Mandarim-de-Lacerda, C.A., Aguila, M.B. (2016). Mice fed fish oil diet and upregulation of brown adipose tissue thermogenic markers. European Journal of Nutrition, 55(1), 159–169.
Bártíková, H., Boušová, I., Matoušková, P., Szotáková, B., Skálová, L. (2017). Effect of green tea extract-enriched diets on insulin and leptin levels, oxidative stress parameters and antioxidant enzymes activities in obese mice. Polish Journal of Food and Nutrition Sciences, 67(3), 233–240.
Bartoňková, I., Dvořák, Z. (2018). Essential oils of culinary herbs and spices display agonist and antagonist activities at human aryl hydrocarbon receptor AhR. Food and Chemical Toxicology, 111, 374–384.
Berry, D.C., Noy, N. (2009). All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Molecular and Cellular Biology, 29(12), 3286–3296.
Bershad, S., Poulin, Y.P., Berson, D.S., Sabean, J., Brodell, R.T., Shalita, A.R., Kakita, L., Tanghetti, E., Leyden, J., Webster, G.F., Miller, B.H. (1999). Topical retinoids in the treatment of acne vulgaris. Cutis, 64(2 Suppl), 8–20.
Bialonska, D., Kasimsetty, S.G., Khan, S.I., Ferreira, D. (2009). Urolithins, intestinal microbial metabolites of Pomegranate ellagitannins, exhibit potent antioxidant activity in a cell-based assay. Journal of Agricultural and Food Chemistry, 57(21), 10181–10186.
Binder, E., Bermúdez-Silva, F.J., Elie, M., Leste-Lasserre, T., Belluomo, I., Clark, S., Duchampt, A., Mithieux, G., Cota, D. (2014). Leucine supplementation modulates fuel substrates utilization and glucose metabolism in previously obese mice. Obesity (Silver Spring, Md.), 22(3), 713–720.
Blankson, H., Stakkestad, J.A., Fagertun, H., Thom, E., Wadstein, J., Gudmundsen, O. (2000). Conjugated linoleic acid reduces body fat mass in overweight and obese humans. The Journal of Nutrition, 130(12), 2943–2948.
Blüher, M. (2013). Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Practice & Research. Clinical Endocrinology & Metabolism, 27(2), 163–177.
Bonati, M., Latini, R., Galletti, F., Young, J.F., Tognoni, G., Garattini, S. (1982). Caffeine disposition after oral doses. Clinical Pharmacology and Therapeutics, 32(1), 98–106.
Boskou, D., Blekas, G., Tsimidou, M. (2006). Olive oil composition. In D. Boskou (Eds.), Olive Oil: Chemistry and Technology, AOCS Press, Boca Raton, USA, pp. 41–72.
Boström, P., Wu, J., Jedrychowski, M.P., Korde, A., Ye, L., Lo, J.C., Rasbach, K.A., Boström, E.A., Choi, J.H., Long, J.Z., Kajimura, S., Zingaretti, M.C., Vind, B.F., Tu, H., Cinti, S., Højlund, K., Gygi, S.P., Spiegelman, B.M. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463–468.
Bounds, S.V., Caldwell, J. (1996). Pathways of metabolism of [1’-14C]-trans-anethole in the rat and mouse. Drug Metabolism and Disposition, 24(7), 717–724.
Burke, A.C., Sutherland, B.G., Telford, D.E., Morrow, M.R., Sawyez, C.G., Edwards, J.Y., Drangova, M., Huff, M.W. (2018). Intervention with citrus flavonoids reverses obesity and improves metabolic syndrome and atherosclerosis in obese Ldlr-/- mice. Journal of Lipid Research, 59(9), 1714–1728.
Cavalera, M., Axling, U., Berger, K., Holm, C. (2016). Rose hip supplementation increases energy expenditure and induces browning of white adipose tissue. Nutrition & Metabolism, 13, art. no. 91.
Cavallito, C.J., Bailey, J.H. (1944). Allicin, the antibacterial principle of Allium sativum. I. Isolation, physical properties and antibacterial action. Journal of the American Chemical Society, 66(11), 1950–1951.
Chen, H., Chan, K.K., Budd, T. (1998). Pharmacokinetics of d-limonene in the rat by GC-MS assay. Journal of Pharmaceutical and Biomedical Analysis, 17(4-5), 631–640.
Chen, L., Lee, M.J., Li, H., Yang, C.S. (1997). Absorption, distribution, elimination of tea polyphenols in rats. Drug Metabolism and Disposition, 25(9), 1045–1050.
Chen, X., Li, D., Hu, Y., Jin, M., Zhou, L., Peng, K., Zheng, H. (2011). Simultaneous determination of 3,3’,4’,5,7-pentamethylquercetin and its possible metabolite 3,3’,4’,7-tetramethylquercetin in dog plasma by liquid chromatography-tandem mass spectrometry and its application to preclinical pharmacokinetic study. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 879(23), 2339–2344.
Chen, Z., Zhu, Q.Y., Tsang, D., Huang, Y. (2001). Degradation of green tea catechins in tea drinks. Journal of Agricultural and Food Chemistry, 49(1), 477–482.
Cheng, Y., Meng, Q., Wang, C., Li, H., Huang, Z., Chen, S., Xiao, F., Guo, F. (2010). Leucine deprivation decreases fat mass by stimulation of lipolysis in white adipose tissue and upregulation of uncoupling protein 1 (UCP1) in brown adipose tissue. Diabetes, 59(1), 17–25.
Cheng, Y., Zhang, Q., Meng, Q., Xia, T., Huang, Z., Wang, C., Liu, B., Chen, S., Xiao, F., Du, Y., Guo, F. (2011). Leucine deprivation stimulates fat loss via increasing CRH expression in the hypothalamus and activating the sympathetic nervous system. Molecular Endocrinology (Baltimore, Md.), 25(9), 1624–1635.
Choi, J.H., Kim, S.W., Yu, R., Yun, J.W. (2017). Monoterpene phenolic compound thymol promotes browning of 3T3-L1 adipocytes. European Journal of Nutrition, 56(7), 2329–2341.
Choi, J.H., Yun, J.W. (2016). Chrysin induces brown fat-like phenotype and enhances lipid metabolism in 3T3-L1 adipocytes. Nutrition, 32(9), 1002–1010.
Choi, M., Mukherjee, S., Kang, N.H., Barkat, J.L., Parray, H.A., Yun, J.W. (2018). L-rhamnose induces browning in 3T3-L1 white adipocytes and activates HIB1B brown adipocytes. IUBMB Life, 70(6), 563–573.
Chondronikola, M., Volpi, E., Børsheim, E., Porter, C., Annamalai, P., Enerbäck, S., Lidell, M.E., Saraf, M.K., Labbe, S.M., Hurren, N.M., Yfanti, C., Chao, T., Andersen, C.R., Cesani, F., Hawkins, H., Sidossis, L.S. (2014). Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes, 63(12), 4089–4099.
Chou, Y.-C., Ho, C.-T., Pan, M.-H. (2018). Immature Citrus reticulata extract promotes browning of beige adipocytes in high-fat diet-induced C57BL/6 mice. Journal of Agricultural and Food Chemistry, 66(37), 9697–9703.
Contreras, G.A., Lee, Y.-H., Mottillo, E.P., Granneman, J.G. (2014). Inducible brown adipocytes in subcutaneous inguinal white fat: the role of continuous sympathetic stimulation. American Journal of Physiology. Endocrinology and Metabolism, 307(9), E793-E799.
Daels-Rakotoarison, D.A., Gressier, B., Trotin, F., Brunet, C., Luyckx, M., Dine, T., Bailleul, F., Cazin, M., Cazin, J.-C. (2002). Effects of Rosa canina fruit extract on neutrophil respiratory burst. Phytotherapy Research, 16(2), 157–161. h
Dawson, M.I. (2000). The importance of vitamin A in nutrition. Current Pharmaceutical Design, 6(3), 311–325.
de Jong, J.M.A., Larsson, O., Cannon, B., Nedergaard, J. (2015). A stringent validation of mouse adipose tissue identity markers. American Journal of Physiology. Endocrinology and Metabolism, 308(12), E1085-1105.
de Macêdo, S.M., Lelis, D. de F., Mendes, K.L., Fraga, C.A. de C., Brandi, I.V., Feltenberger, J.D., Farias, L.C., Guimarães, A.L.S., de Paula, A.M.B., Santos, S.H. de S. (2017). Effects of dietary macronutrient composition on FNDC5 and irisin in mice skeletal muscle. Metabolic Syndrome and Related Disorders, 15(4), 161–169.
Doyle, B., Griffiths, L.A. (1980). The metabolism of ellagic acid in the rat. Xenobiotica, 10(4), 247–256.
Du, J., Shen, L., Tan, Z., Zhang, P., Zhao, X., Xu, Y., Gan, M., Yang, Q., Ma, J., Jiang, A., Tang, G., Jiang, Y., Jin, L., Li, M., Bai, L., Li, X., Wang, J., Zhang, S., Zhu, L. (2018). Betaine supplementation enhances lipid metabolism and improves insulin resistance in mice fed a high-fat diet. Nutrients, 10(2), art. no. 131.
Fabbiano, S., Suárez-Zamorano, N., Rigo, D., Veyrat-Durebex, C., Stevanovic Dokic, A., Colin, D.J., Trajkovski, M. (2016). Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling. Cell Metabolism, 24(3), 434–446.
Fahey, J.W., Holtzclaw, W.D., Wehage, S.L., Wade, K.L., Stephenson, K.K., Talalay, P. (2015). Sulforaphane bioavailability from glucoraphanin-rich broccoli: control by active endogenous myrosinase. PLoS One, 10(11), art. no. e0140963.
Farco, J.A., Grundmann, O. (2013). Menthol – pharmacology of an important naturally medicinal “cool.” Mini Reviews in Medicinal Chemistry, 13(1), 124–131.
Felgines, C., Texier, O., Morand, C., Manach, C., Scalbert, A., Régerat, F., Rémésy, C. (2000). Bioavailability of the flavanone naringenin and its glycosides in rats. American Journal of Physiology. Gastrointestinal and Liver Physiology, 279(6), G1148-1154.
Fisher, F.M., Kleiner, S., Douris, N., Fox, E.C., Mepani, R.J., Verdeguer, F., Wu, J., Kharitonenkov, A., Flier, J.S., Maratos-Flier, E., Spiegelman, B.M. (2012). FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes & Development, 26(3), 271–281.
Fong, B.Y., Norris, C.S., MacGibbon, A.K.H. (2007). Protein and lipid composition of bovine milk-fat-globule membrane. International Dairy Journal, 17(4), 275–288.
Forney, L.A., Lenard, N.R., Stewart, L.K., Henagan, T.M. (2018). Dietary quercetin attenuates adipose tissue expansion and inflammation and alters adipocyte morphology in a tissue-specific manner. International Journal of Molecular Sciences, 19(3), art. no. 895.
Gandhi, G.R., Vasconcelos, A.B.S., Wu, D.-T., Li, H.-B., Antony, P.J., Li, H., Geng, F., Gurgel, R.Q., Narain, N., Gan, R.-Y. (2020). Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: a systematic review of in vitro and in vivo studies. Nutrients, 12(10), E2907.
Gao, X., Xie, Q., Kong, P., Liu, L., Sun, S., Xiong, B., Huang, B., Yan, L., Sheng, J., Xiang, H. (2018). Polyphenol- and caffeine-rich postfermented pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice. Infection and Immunity, 86(1), art. no. e00601-17.
García-Alonso, V., López-Vicario, C., Titos, E., Morán-Salvador, E., González-Périz, A., Rius, B., Párrizas, M., Werz, O., Arroyo, V., Clària, J. (2013). Coordinate functional regulation between microsomal prostaglandin E synthase-1 (mPGES-1) and peroxisome proliferator-activated receptor γ (PPARγ) in the conversion of white-to-brown adipocytes. The Journal of Biological Chemistry, 288(39), 28230–28242.
García-Alonso, V., Titos, E., Alcaraz-Quiles, J., Rius, B., Lopategi, A., López-Vicario, C., Jakobsson, P.-J., Delgado, S., Lozano, J., Clària, J. (2016). Prostaglandin E2 exerts multiple regulatory actions on human obese adipose tissue remodeling, inflammation, adaptive thermogenesis and lipolysis. PLoS One, 11(4), art. no. e0153751.
Gelal, A., Jacob, P., Yu, L., Benowitz, N.L. (1999). Disposition kinetics and effects of menthol. Clinical Pharmacology and Therapeutics, 66(2), 128–135.
Golbidi, S., Daiber, A., Korac, B., Li, H., Essop, M.F., Laher, I. (2017). Health benefits of fasting and caloric restriction. Current Diabetes Reports, 17(12), art. no. 123.
Górska-Warsewicz, H., Laskowski, W., Kulykovets, O., Kudlińska-Chylak, A., Czeczotko, M., Rejman, K. (2018). Food products as sources of protein and amino acids—The case of Poland. Nutrients 10(12), art. no. 1977.
Grossini, E., Farruggio, S., Raina, G., Mary, D., Deiro, G., Gentilli, S. (2018). Effects of genistein on differentiation and viability of human visceral adipocytes. Nutrients, 10(8), art. no. 978.
Gruenwald, J., Freder, J., Armbruester, N. (2010). Cinnamon and health. Critical Reviews in Food Science and Nutrition, 50(9), 822–834.
Guo, H., Foncea, R., O’Byrne, S.M., Jiang, H., Zhang, Y., Deis, J.A., Blaner, W.S., Bernlohr, D.A., Chen, X. (2016). Lipocalin 2, a regulator of retinoid homeostasis and retinoid-mediated thermogenic activation in adipose tissue. The Journal of Biological Chemistry, 291(21), 11216–11229.
Guo, Y.-Y., Li, B.-Y., Peng, W.-Q., Guo, L., Tang, Q.-Q. (2019). Taurine-mediated browning of white adipose tissue is involved in its anti-obesity effect in mice. The Journal of Biological Chemistry, 294(41), 15014–15024.
Han, Y., Wu, J.-Z., Shen, J.-Z., Chen, L., He, T., Jin, M.-W., Liu, H. (2017). Pentamethylquercetin induces adipose browning and exerts beneficial effects in 3T3-L1 adipocytes and high-fat diet-fed mice. Scientific Reports, 7(1), art. no. 1123.
Hargrave, K.M., Li, C., Meyer, B.J., Kachman, S.D., Hartzell, D.L., Della-Fera, M.A., Miner, J.L., Baile, C.A. (2002). Adipose depletion and apoptosis induced by trans-10, cis-12 conjugated linoleic acid in mice. Obesity Research, 10(12), 1284–1290.
Harms, M., Seale, P. (2013). Brown and beige fat: development, function and therapeutic potential. Nature Medicine, 19(10), 1252–1263.
Helal, A., Tagliazucchi, D., Verzelloni, E., Conte, A. (2014). Bioaccessibility of polyphenols and cinnamaldehyde in cinnamon beverages subjected to in vitro gastro-pancreatic digestion. Journal of Functional Foods, 7(1), 506–516.
Hodisan, T., Socaciu, C., Ropan, I., Neamtu, G. (1997). Carotenoid composition of Rosa canina fruits determined by thin-layer chromatography and high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 16(3), 521–528.
Hostetler, G.L., Ralston, R.A., Schwartz, S.J. (2017). Flavones: food sources, bioavailability, metabolism, and bioactivity. Advances in Nutrition (Bethesda, Md.), 8(3), 423–435.
Houghton, C.A., Fassett, R.G., Coombes, J.S. (2016). Sulforaphane and other nutrigenomic Nrf2 activators: can the clinician’s expectation be matched by the reality? Oxidative Medicine and Cellular Longevity, 2016, art. no. 7857186.
Hu, J., Kyrou, I., Tan, B.K., Dimitriadis, G.K., Ramanjaneya, M., Tripathi, G., Patel, V., James, S., Kawan, M., Chen, J., Randeva, H.S. (2016). Short-chain fatty acid acetate stimulates adipogenesis and mitochondrial biogenesis via GPR43 in brown adipocytes. Endocrinology, 157(5), 1881–1894.
Jaiswal, N., Akhtar, J., Singh, S.P., Badruddeen, Ahsan, F. (2019). An overview on genistein and its various formulations. Drug Research, 69(6), 305–313.
Jia, T., Qiao, J., Guan, D., Chen, T. (2017). Anti-inflammatory effects of licochalcone A on IL-1β-stimulated human osteoarthritis chondrocytes. Inflammation, 40(6), 1894–1902.
Jiang, C., Zhai, M., Yan, D., Li, D., Li, C., Zhang, Y., Xiao, L., Xiong, D., Deng, Q., Sun, W. (2017). Dietary menthol-induced TRPM8 activation enhances WAT “browning” and ameliorates diet-induced obesity. Oncotarget, 8(43), 75114–75126.
Jiang, N., Dillon, F.M., Silva, A., Gomez-Cano, L., Grotewold, E. (2021). Rhamnose in plants - from biosynthesis to diverse functions. Plant Science, 302, art. no. 110687.
Jiang, Y., Rose, A.J., Sijmonsma, T.P., Bröer, A., Pfenninger, A., Herzig, S., Schmoll, D., Bröer, S. (2015). Mice lacking neutral amino acid transporter B(0)AT1 (Slc6a19) have elevated levels of FGF21 and GLP-1 and improved glycaemic control. Molecular Metabolism, 4(5), 406–417.
Jiao, J., Han, S.-F., Zhang, W., Xu, J.-Y., Tong, X., Yin, X.-B., Yuan, L.-X., Qin, L.-Q. (2016). Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet. Food & Nutrition Research, 60, art. no. 31304.
Jumpertz, R., Le, D.S., Turnbaugh, P.J., Trinidad, C., Bogardus, C., Gordon, J.I., Krakoff, J. (2011). Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. The American Journal of Clinical Nutrition, 94(1), 58–65.
Kajimura, S., Spiegelman, B.M., Seale, P. (2015). Brown and beige fat: physiological roles beyond heat generation. Cell Metabolism, 22(4), 546–559.
Kang, N.H., Mukherjee, S., Min, T., Kang, S.C., Yun, J.W. (2018). trans-Anethole ameliorates obesity via induction of browning in white adipocytes and activation of brown adipocytes. Biochimie, 151, 1–13.
Kaşıkcı, M.B., Bağdatlıoğlu, N. (2016). Bioavailability of quercetin. Current Research in Nutrition and Food Science Journal, 4(Suppl 2), 146–151.
Khaled, K.A., El-Sayed, Y.M., Al-Hadiya, B.M. (2003). Disposition of the flavonoid quercetin in rats after single intravenous and oral doses. Drug Development and Industrial Pharmacy, 29(4), 397–403.
Kim, H.-J., Choi, E.-J., Kim, H.S., Choi, C.-W., Choi, S.-W., Kim, S.-L., Seo, W.-D., Do, S.H. (2019). Germinated soy germ extract ameliorates obesity through beige fat activation. Food & Function, 10(2), 836–848.
Kim, J., Okla, M., Erickson, A., Carr, T., Natarajan, S.K., Chung, S. (2016). Eicosapentaenoic acid potentiates brown thermogenesis through FFAR4-dependent up-regulation of miR-30b and miR-378. The Journal of Biological Chemistry, 291(39), 20551–20562.
Kim, M., Furuzono, T., Yamakuni, K., Li, Y., Kim, Y.-I., Takahashi, H., Ohue-Kitano, R., Jheng, H.-F., Takahashi, N., Kano, Y., Yu, R., Kishino, S., Ogawa, J., Uchida, K., Yamazaki, J., Tominaga, M., Kawada, T., Goto, T. (2017). 10-Oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1. FASEB Journal, 31(11), 5036–5048.
Kim, M., Goto, T., Yu, R., Uchida, K., Tominaga, M., Kano, Y., Takahashi, N., Kawada, T. (2015). Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system. Scientific Reports, 5, art. no. 18013.
Kim, S.-L., Lee, J.-E., Kwon, Y.-U., Kim, W.-H., Jung, G.-H., Kim, D.-W., Lee, C.-K., Lee, Y.-Y., Kim, M.-J., Kim, Y.-H., Hwang, T.-Y., Chung, I.-M. (2013). Introduction and nutritional evaluation of germinated soy germ. Food Chemistry, 136(2), 491–500.
Kishino, S., Takeuchi, M., Park, S.-B., Hirata, A., Kitamura, N., Kunisawa, J., Kiyono, H., Iwamoto, R., Isobe, Y., Arita, M., Arai, H., Ueda, K., Shima, J., Takahashi, S., Yokozeki, K., Shimizu, S., Ogawa, J. (2013). Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proceedings of the National Academy of Sciences of the United States of America, 110(44), 17808–17813.
Kohlert, C., Schindler, G., März, R.W., Abel, G., Brinkhaus, B., Derendorf, H., Gräfe, E.-U., Veit, M. (2002). Systemic availability and pharmacokinetics of thymol in humans. Journal of Clinical Pharmacology, 42(7), 731–737.
Kowalski, R., Kałwa, K., Wilczyński, K., Kobus, Z. (2019). The fatty acids composition of selected fish oils used as dietary supplements. Polish Journal of Natural Sciences, 34(1), 115–126.
Kris-Etherton, P.M., Grieger, J.A., Etherton, T.D. (2009). Dietary reference intakes for DHA and EPA. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 81(2-3), 99–104.
Krithika, J., Sathiyasree, B., Teodore, B., Ramarajan, C., Gurushankar, K. (2020). Optimization of extraction parameters and stabilization of anthocyanin from onion peel. Critical Reviews in Food Science and Nutrition, 1–8.
Kwan, H.Y., Wu, J., Su, T., Chao, X.-J., Liu, B., Fu, X., Chan, C.L., Lau, R.H.Y., Tse, A.K.W., Han, Q.B., Fong, W.F., Yu, Z.-L. (2017). Cinnamon induces browning in subcutaneous adipocytes. Scientific Reports, 7(1), art. no. 2447.
Lafontan, M., Barbe, P., Galitzky, J., Tavernier, G., Langin, D., Carpéné, C., Bousquet-Melou, A., Berlan, M. (1997). Adrenergic regulation of adipocyte metabolism. Human Reproduction (Oxford, England), 12(Suppl 1), 6–20.
Laidlaw, S.A., Grosvenor, M., Kopple, J.D. (1990). The taurine content of common foodstuffs. JPEN - Journal of Parenteral and Enteral Nutrition, 14(2), 183–188.
Laiglesia, L.M., Lorente-Cebrián, S., Prieto-Hontoria, P.L., Fernández-Galilea, M., Ribeiro, S.M.R., Sáinz, N., Martínez, J.A., Moreno-Aliaga, M.J. (2016). Eicosapentaenoic acid promotes mitochondrial biogenesis and beige-like features in subcutaneous adipocytes from overweight subjects. The Journal of Nutritional Biochemistry, 37, 76–82.
Landete, J.M. (2011). Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and healt. Food Research International (Ottawa, Ont.), 44(5), 1150–1160.
LaRosa, P.C., Miner, J., Xia, Y., Zhou, Y., Kachman, S., Fromm, M.E. (2006). trans-10, cis-12 Conjugated linoleic acid causes inflammation and delipidation of white adipose tissue in mice: a microarray and histological analysis. Physiological Genomics, 27(3), 282–294.
Lawson, L.D., Hunsaker, S.M. (2018). Allicin bioavailability and bioequivalence from garlic supplements and garlic foods. Nutrients, 10(7), art. no. E812.
Lee, C.G., Rhee, D.K., Kim, B.O., Um, S.H., Pyo, S. (2019). Allicin induces beige-like adipocytes via KLF15 signal cascade. The Journal of Nutritional Biochemistry, 64, 13–24.
Lee, H.E., Yang, G., Han, S.-H., Lee, J.-H., An, T.-J., Jang, J.-K., Lee, J.Y. (2018). Anti-obesity potential of Glycyrrhiza uralensis and licochalcone A through induction of adipocyte browning. Biochemical and Biophysical Research Communications, 503(3), 2117–2123.
Lee, S.G., Parks, J.S., Kang, H.W. (2017). Quercetin, a functional compound of onion peel, remodels white adipocytes to brown-like adipocytes. The Journal of Nutritional Biochemistry, 42, 62–71.
Leu, S.-Y., Tsai, Y.-C., Chen, W.-C., Hsu, C.-H., Lee, Y.-M., Cheng, P.-Y. (2018). Raspberry ketone induces brown-like adipocyte formation through suppression of autophagy in adipocytes and adipose tissue. The Journal of Nutritional Biochemistry, 56, 116–125.
Li, G., Xie, C., Lu, S., Nichols, R.G., Tian, Y., Li, L., Patel, D., Ma, Y., Brocker, C.N., Yan, T., Krausz, K.W., Xiang, R., Gavrilova, O., Patterson, A.D., Gonzalez, F.J. (2017). Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metabolism, 26(4), 672-685.e4.
Li, T., Gao, J., Du, M., Song, J., Mao, X. (2018). Milk fat globule membrane attenuates high-fat diet-induced obesity by inhibiting adipogenesis and increasing uncoupling protein 1 expression in white adipose tissue of mice. Nutrients, 10(3), art. no. 331.
Libby, A.E., Bales, E.S., Monks, J., Orlicky, D.J., McManaman, J.L. (2018). Perilipin-2 deletion promotes carbohydrate-mediated browning of white adipose tissue at ambient temperature. Journal of Lipid Research, 59(8), 1482–1500.
Lidell, M.E., Betz, M.J., Leinhard, O.D., Heglind, M., Elander, L., Slawik, M., Mussack, T., Nilsson, D., Romu, T., Nuutila, P., Virtanen, K.A., Beuschlein, F., Persson, A., Borga, M., Enerbäck, S. (2013). Evidence for two types of brown adipose tissue in humans. Nature Medicine, 19(5), 631–634.
Liu, J., Li, Y., Yang, P., Wan, J., Chang, Q., Wang, T.T.Y., Lu, W., Zhang, Y., Wang, Q., Yu, L.L. (2017). Gypenosides reduced the risk of overweight and insulin resistance in C57BL/6J mice through modulating adipose thermogenesis and gut microbiota. Journal of Agricultural and Food Chemistry, 65(42), 9237–9246.
Liu, Y.C., Hasegawa, Y. (2006). Reducing effect of feeding powdered scallop shell on the body fat mass of rats. Bioscience, Biotechnology, and Biochemistry, 70(1), 86–92.
Liu, Y.C., Satoh, K., Hasegawa, Y. (2006). Feeding scallop shell powder induces the expression of uncoupling protein 1 (UCP1) in white adipose tissue of rats. Bioscience, Biotechnology, and Biochemistry, 70(11), 2733–2738.
Lone, J., Choi, J.H., Kim, S.W., Yun, J.W. (2016). Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. The Journal of Nutritional Biochemistry, 27, 193–202.
Lone, J., Parray, H.A., Yun, J.W. (2018). Nobiletin induces brown adipocyte-like phenotype and ameliorates stress in 3T3-L1 adipocytes. Biochimie, 146, 97–104.
Lone, J., Yun, J.W. (2016). Monoterpene limonene induces brown fat-like phenotype in 3T3-L1 white adipocytes. Life Sciences, 153, 198–206.
Lu, Yuanyuan, Fan, C., Li, P., Lu, Yanfei, Chang, X., Qi, K. (2016). Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Scientific Reports, 6, art. no. 37589.
Lund, J., Larsen, L.H., Lauritzen, L. (2018). Fish oil as a potential activator of brown and beige fat thermogenesis. Adipocyte, 7(2), 88–95.
Luo, L., Liu, M. (2016). Adipose tissue in control of metabolism. The Journal of Endocrinology, 231(3), R77–R99.
Mao, Z., Liang, Y., Du, X., Sun, Z. (2009). 3,3’,4’,5,7-Pentamethylquercetin reduces angiotensin II-induced cardiac hypertrophy and apoptosis in rats. Canadian Journal of Physiology and Pharmacology, 87(9), 720–728.
Marcelino, G., Hiane, P.A., Freitas, K. de C., Santana, L.F., Pott, A., Donadon, J.R., Guimarães, R. de C.A. (2019). Effects of olive oil and its minor components on cardiovascular diseases, inflammation, and gut microbiota. Nutrients, 11(8), art. no. E1826.
Mas-Capdevila, A., Teichenne, J., Domenech-Coca, C., Caimari, A., Del Bas, J.M., Escoté, X., Crescenti, A. (2020). Effect of hesperidin on cardiovascular disease risk factors: the role of intestinal microbiota on hesperidin bioavailability. Nutrients, 12(5), art. no. E1488.
Meng-er, H., Yu-chen, Y., Shu-rong, C., Jin-ren, C., Jia-Xiang, L., Lin, Z., Long-jun, G., Zhen-yi, W. (1988). Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood, 72(2), 567–572.
Mercader, J., Ribot, J., Murano, I., Felipe, F., Cinti, S., Bonet, M.L., Palou, A. (2006). Remodeling of white adipose tissue after retinoic acid administration in mice. Endocrinology, 147(11), 5325–5332.
Min, S.Y., Kady, J., Nam, M., Rojas-Rodriguez, R., Berkenwald, A., Kim, J.H., Noh, H.-L., Kim, J.K., Cooper, M.P., Fitzgibbons, T., Brehm, M.A., Corvera, S. (2016). Human ‘brite / beige’ adipocytes develop from capillary networks and their implantation improves metabolic homeostasis in mice. Nature Medicine, 22(3), 312–318.
Mize, C.E., Avigan, J., Baxter, J.H., Fales, H.M., Steinberg, D. (1966). Metabolism of phytol-U-14C and phytanic acid-U-14C in the rat. Journal of Lipid Research, 7(5), 692–697.
Moreno-Navarrete, J.M., Serino, M., Blasco-Baque, V., Azalbert, V., Barton, R.H., Cardellini, M., Latorre, J., Ortega, F., Sabater-Masdeu, M., Burcelin, R., Dumas, M.-E., Ricart, W., Federici, M., Fernández-Real, J.M. (2018). Gut microbiota interacts with markers of adipose tissue browning, insulin action and plasma acetate in morbid obesity. Molecular Nutrition & Food Research, 62(3), art. no. 1700721.
Mosqueda-Solís, A., Sánchez, J., Portillo, M.P., Palou, A., Picó, C. (2018). Combination of capsaicin and hesperidin reduces the effectiveness of each compound to decrease the adipocyte size and to induce browning features in adipose tissue of Western diet fed rats. Journal of Agricultural and Food Chemistry 66(37), 9679–9689.
Murholm, M., Isidor, M.S., Basse, A.L., Winther, S., Sørensen, C., Skovgaard-Petersen, J., Nielsen, M.M., Hansen, A.S., Quistorff, B., Hansen, J.B. (2013). Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes. BMC Cell Biology, 14, art. no. 41.
Nagata, N., Xu, L., Kohno, S., Ushida, Y., Aoki, Y., Umeda, R., Fuke, N., Zhuge, F., Ni, Y., Nagashimada, M., Takahashi, C., Suganuma, H., Kaneko, S., Ota, T. (2017). Glucoraphanin ameliorates obesity and insulin resistance through adipose tissue browning and reduction of metabolic endotoxemia in mice. Diabetes, 66(5), 1222–1236.
Neyrinck, A.M., Bindels, L.B., Geurts, L., Van Hul, M., Cani, P.D., Delzenne, N.M. (2017). A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice. The Journal of Nutritional Biochemistry, 49, 15–21.
Okla, M., Kim, J., Koehler, K., Chung, S. (2017). Dietary factors promoting brown and beige fat development and thermogenesis. Advances in Nutrition (Bethesda, Md.), 8(3), 473–483.
Oku, T., Nakamura, S. (2000). Estimation of intestinal trehalase activity from a laxative threshold of trehalose and lactulose on healthy female subjects. European Journal of Clinical Nutrition, 54(10), 783–788.
Pahlavani, M., Razafimanjato, F., Ramalingam, L., Kalupahana, N.S., Moussa, H., Scoggin, S., Moustaid-Moussa, N. (2017). Eicosapentaenoic acid regulates brown adipose tissue metabolism in high-fat-fed mice and in clonal brown adipocytes. The Journal of Nutritional Biochemistry, 39, 101–109.
Pap, N., Fidelis, M., Azevedo, L., do Carmo, M.A.V., Wang, D., Mocan, A., Pereira, E.P.R., Xavier-Santos, D., Sant'Ana, A., Yang, B., Granato, D. (2021). Berry polyphenols and human health: evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Current Opinion in Food Science, 42, 167–186.
Pascual-Serrano, A., Bladé, C., Suárez, M., Arola-Arnal, A. (2018). Grape seed proanthocyanidins improve white adipose tissue expansion during diet-induced obesity development in rats. International Journal of Molecular Sciences, 19(9), art. no. 2632.
Patil, D.P., Dhotre, D.P., Chavan, S.G., Sultan, A., Jain, D.S., Lanjekar, V.B., Gangawani, J., Shah, P.S., Todkar, J.S., Shah, S., Ranade, D.R., Patole, M.S., Shouche, Y.S. (2012). Molecular analysis of gut microbiota in obesity among Indian individuals. Journal of Biosciences, 37(4), 647–657.
Peier, A.M., Moqrich, A., Hergarden, A.C., Reeve, A.J., Andersson, D.A., Story, G.M., Earley, T.J., Dragoni, I., McIntyre, P., Bevan, S., Patapoutian, A. (2002). A TRP channel that senses cold stimuli and menthol. Cell, 108(5), 705–715.
Pereira, M.P., Ferreira, L.A.A., da Silva, F.H.S., Christoffolete, M.A., Metsios, G.S., Chaves, V.E., de França, S.A., Damazo, A.S., Flouris, A.D., Kawashita, N.H. (2017). A low-protein, high-carbohydrate diet increases browning in perirenal adipose tissue but not in inguinal adipose tissue. Nutrition, 42, 37–45.
Pisani, D.F., Ghandour, R.A., Beranger, G.E., Le Faouder, P., Chambard, J.-C., Giroud, M., Vegiopoulos, A., Djedaini, M., Bertrand-Michel, J., Tauc, M., Herzig, S., Langin, D., Ailhaud, G., Duranton, C., Amri, E.-Z. (2014). The ω6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway. Molecular Metabolism, 3(9), 834–847.
Quan, H.-Y., Baek, N.I., Chung, S.H. (2012). Licochalcone A prevents adipocyte differentiation and lipogenesis via suppression of peroxisome proliferator-activated receptor γ and sterol regulatory element-binding protein pathways. Journal of Agricultural and Food Chemistry, 60(20), 5112–5120.
Quesada-López, T., Cereijo, R., Turatsinze, J.-V., Planavila, A., Cairó, M., Gavaldà-Navarro, A., Peyrou, M., Moure, R., Iglesias, R., Giralt, M., Eizirik, D.L., Villarroya, F. (2016). The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes. Nature Communications, 7, art. no. 13479.
Ramiro-Puig, E., Castell, M. (2009). Cocoa: antioxidant and immunomodulator. The British Journal of Nutrition, 101(7), 931–940.
Rayalam, S., Yang, J.-Y., Ambati, S., Della-Fera, M.A., Baile, C.A. (2008). Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytotherapy Research, 22(10), 1367–1371.
Rodriguez Lanzi, C., Perdicaro, D.J., Antoniolli, A., Fontana, A.R., Miatello, R.M., Bottini, R., Vazquez Prieto, M.A. (2016). Grape pomace and grape pomace extract improve insulin signaling in high-fat-fructose fed rat-induced metabolic syndrome. Food & Function, 7(3), 1544–1553.
Rodriguez Lanzi, C., Perdicaro, D.J., Landa, M.S., Fontana, A., Antoniolli, A., Miatello, R.M., Oteiza, P.I., Vazquez Prieto, M.A. (2018). Grape pomace extract induced beige cells in white adipose tissue from rats and in 3T3-L1 adipocytes. The Journal of Nutritional Biochemistry, 56, 224–233.
Rodríguez, V.M., Portillo, M.P., Picó, C., Macarulla, M.T., Palou, A. (2002). Olive oil feeding up-regulates uncoupling protein genes in rat brown adipose tissue and skeletal muscle. The American Journal of Clinical Nutrition, 75(2), 213–220.
Rondanelli, M., Nichetti, M., Peroni, G., Faliva, M.A., Naso, M., Gasparri, C., Perna, S., Oberto, L., Di Paolo, E., Riva, A., Petrangolini, G., Guerreschi, G., Tartara, A. (2021). Where to find leucine in food and how to feed elderly with sarcopenia in order to counteract loss of muscle mass: practical advice. Frontiers in Nutrition, 7, art. no. 622391.
Rosenwald, M., Perdikari, A., Rülicke, T., Wolfrum, C. (2013). Bi-directional interconversion of brite and white adipocytes. Nature Cell Biology, 15(6), 659–667.
Ross, A.B., Zangger, A., Guiraud, S.P. (2014). Cereal foods are the major source of betaine in the Western diet--analysis of betaine and free choline in cereal foods and updated assessments of betaine intake. Food Chemistry, 145, 859–865.
Rossato, M., Granzotto, M., Macchi, V., Porzionato, A., Petrelli, L., Calcagno, A., Vencato, J., De Stefani, D., Silvestrin, V., Rizzuto, R., Bassetto, F., De Caro, R., Vettor, R. (2014). Human white adipocytes express the cold receptor TRPM8 which activation induces UCP1 expression, mitochondrial activation and heat production. Molecular and Cellular Endocrinology, 383(1-2), 137–146.
Rossi, F., Punzo, F., Umano, G.R., Argenziano, M., Miraglia Del Giudice, E. (2018). Role of cannabinoids in obesity. International Journal of Molecular Sciences, 19(9), art. no. 2690.
Sae-Tan, S., Rogers, C.J., Lambert, J.D. (2015). Decaffeinated green tea and voluntary exercise induce gene changes related to beige adipocyte formation in high fat-fed obese mice. Journal of Functional Foods, 14, 210–214.
Sarawek, S., Derendorf, H., Butterweck, V. (2008). Pharmacokinetics of luteolin and metabolites in rats. Natural Product Communications, 3(12), 2029–2036.
Sauer, L.A., Dauchy, R.T., Blask, D.E., Krause, J.A., Davidson, L.K., Dauchy, E.M., Welham, K.J., Coupland, K. (2004). Conjugated linoleic acid isomers and trans fatty acids inhibit fatty acid transport in hepatoma 7288CTC and inguinal fat pads in Buffalo rats. The Journal of Nutrition, 134(8), 1989–1997.
Schluter, A., Giralt, M., Iglesias, R., Villarroya, F. (2002). Phytanic acid, but not pristanic acid, mediates the positive effects of phytol derivatives on brown adipocyte differentiation. FEBS Letters, 517(1-3), 83–86.
Shabalina, I.G., Petrovic, N., de Jong, J.M.A., Kalinovich, A.V., Cannon, B., Nedergaard, J. (2013). UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Reports, 5(5), 1196–1203.
Shapiro, T.A., Fahey, J.W., Wade, K.L., Stephenson, K.K., Talalay, P. (2001). Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiology, Biomarkers & Prevention, 10(5), 501–508.
Shen, H.-H., Huang, S.-Y., Kung, C.-W., Chen, S.-Y., Chen, Y.-F., Cheng, P.-Y., Lam, K.-K., Lee, Y.-M. (2019). Genistein ameliorated obesity accompanied with adipose tissue browning and attenuation of hepatic lipogenesis in ovariectomized rats with high-fat diet. The Journal of Nutritional Biochemistry, 67, 111–122.
Shen, W., McIntosh, M.K. (2016). Nutrient regulation: conjugated linoleic acid’s inflammatory and browning properties in adipose tissue. Annual Review of Nutrition, 36, 183–210.
Shin, S., Ajuwon, K.M. (2018a). Divergent response of murine and porcine adipocytes to stimulation of browning genes by 18-carbon polyunsaturated fatty acids and beta-receptor agonists. Lipids, 53(1), 65–75.
Shin, S., Ajuwon, K.M. (2018b). Effects of diets differing in composition of 18-C fatty acids on adipose tissue thermogenic gene expression in mice fed high-fat diets. Nutrients, 10(2), art. no. 256.
Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H.R., Shakeel, A., Ansari, A., Niazi, S. (2016). Inulin: properties, health benefits and food applications. Carbohydrate Polymers, 147, 444–454.
Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., Srinivas, P.S. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Medica, 64(4), 353–356.
Silvester, A.J., Aseer, K.R., Yun, J.W. (2019). Dietary polyphenols and their roles in fat browning. The Journal of Nutritional Biochemistry, 64, 1–12.
Smedman, A., Vessby, B. (2001). Conjugated linoleic acid supplementation in humans--metabolic effects. Lipids, 36(8), 773–781.
Sonnweber, T., Pizzini, A., Nairz, M., Weiss, G., Tancevski, I. (2018). Arachidonic acid metabolites in cardiovascular and metabolic diseases. International Journal of Molecular Sciences, 19(11), art. no. E3285.
Steck, S.E., Chalecki, A.M., Miller, P., Conway, J., Austin, G.L., Hardin, J.W., Albright, C.D., Thuillier, P. (2007). Conjugated linoleic acid supplementation for twelve weeks increases lean body mass in obese humans. The Journal of Nutrition, 137(5), 1188–1193.
Stohs, S.J., Preuss, H.G., Keith, S.C., Keith, P.L., Miller, H., Kaats, G.R. (2011). Effects of p-synephrine alone and in combination with selected bioflavonoids on resting metabolism, blood pressure, heart rate and self-reported mood changes. International Journal of Medical Sciences, 8(4), 295–301.
Stone, K.P., Wanders, D., Calderon, L.F., Spurgin, S.B., Scherer, P.E., Gettys, T.W. (2015). Compromised responses to dietary methionine restriction in adipose tissue but not liver of ob/ob mice. Obesity (Silver Spring, Md.), 23(9), 1836–1844.
Strålsjö, L., Alklint, C., Olsson, M.E., Sjöholm, I. (2003). Total folate content and retention in rosehips (Rosa ssp.) after drying. Journal of Agricultural and Food Chemistry, 51(15), 4291–4295.
Suárez-Zamorano, N., Fabbiano, S., Chevalier, C., Stojanović, O., Colin, D.J., Stevanović, A., Veyrat-Durebex, C., Tarallo, V., Rigo, D., Germain, S., Ilievska, M., Montet, X., Seimbille, Y., Hapfelmeier, S., Trajkovski, M. (2015). Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nature Medicine, 21(12), 1497–1501.
Sun, J. (2007). D-Limonene: safety and clinical applications. Alternative Medicine Review: A Journal of Clinical Therapeutic, 12(3), 259–264.
Sun, Y., Qiao, L., Shen, Y., Jiang, P., Chen, J., Ye, X. (2013). Phytochemical profile and antioxidant activity of physiological drop of citrus fruits. Journal of Food Science, 78(1), C37-42.
Suresh, D., Srinivasan, K. (2010). Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. The Indian Journal of Medical Research, 131, 682–691.
Taber, L., Chiu, C.H., Whelan, J. (1998). Assessment of the arachidonic acid content in foods commonly consumed in the American diet. Lipids, 33(12), 1151–1157.
Tazoe, H., Otomo, Y., Kaji, I., Tanaka, R., Karaki, S.-I., Kuwahara, A. (2008). Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. Journal of Physiology and Pharmacology, 59(Suppl 2), 251–262.
Tourniaire, F., Musinovic, H., Gouranton, E., Astier, J., Marcotorchino, J., Arreguin, A., Bernot, D., Palou, A., Bonet, M.L., Ribot, J., Landrier, J.-F. (2015). All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes. Journal of Lipid Research, 56(6), 1100–1109.
Ueland, P.M. (2011). Choline and betaine in health and disease. Journal of Inherited Metabolic Disease, 34(1), 3–15.
Unno, Y., Yamamoto, H., Takatsuki, S., Sato, Y., Kuranaga, T., Yazawa, K., Ono, Y., Wakimoto, T. (2018). Palmitoyl lactic acid induces adipogenesis and a brown fat-like phenotype in 3T3-L1 preadipocytes. Biochimica Et Biophysica Acta. Molecular and Cell Biology of Lipids, 1863(7), 772–782.
Varela, C.E., Rodriguez, A., Romero-Valdovinos, M., Mendoza-Lorenzo, P., Mansour, C., Ceballos, G., Villarreal, F., Ramirez-Sanchez, I. (2017). Browning effects of (–)-epicatechin on adipocytes and white adipose tissue. European Journal of Pharmacology, 811, 48–59.
Vattem, D.A., Shetty, K. (2005). Biological functionality of ellagic acid: a review. Journal of Food Biochemistry, 29(3), 234–266.
Velickovic, K., Wayne, D., Leija, H.A.L., Bloor, I., Morris, D.E., Law, J., Budge, H., Sacks, H., Symonds, M.E., Sottile, V. (2019). Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Scientific Reports, 9(1), art. no. 9104.
Verhoeven, N.M., Jakobs, C. (2001). Human metabolism of phytanic acid and pristanic acid. Progress in Lipid Research, 40(6), 453–466.
Villarroya, F., Cereijo, R., Villarroya, J., Giralt, M. (2017). Brown adipose tissue as a secretory organ. Nature Reviews. Endocrinology, 13(1), 26–35.
Vissers, M.N., Zock, P.L., Katan, M.B. (2004). Bioavailability and antioxidant effects of olive oil phenols in humans: a review. European Journal of Clinical Nutrition, 58(6), 955–965.
Walle, T., Hsieh, F., DeLegge, M.H., Oatis, J.E., Walle, U.K. (2004). High absorption but very low bioavailability of oral resveratrol in humans. Drug Metabolism and Disposition, 32(12), 1377–1382.
Walle, T., Otake, Y., Brubaker, J.A., Walle, U.K., Halushka, P.V. (2001). Disposition and metabolism of the flavonoid chrysin in normal volunteers. British Journal of Clinical Pharmacology, 51(2), 143–146.
Wanders, D., Forney, L.A., Stone, K.P., Burk, D.H., Pierse, A., Gettys, T.W. (2017). FGF21 mediates the thermogenic and insulin-sensitizing effects of dietary methionine restriction but not its effects on hepatic lipid metabolism. Diabetes, 66(4), 858–867.
Wanders, D., Stone, K.P., Dille, K., Simon, J., Pierse, A., Gettys, T.W. (2015). Metabolic responses to dietary leucine restriction involve remodeling of adipose tissue and enhanced hepatic insulin signaling. BioFactors (Oxford, England), 41(6), 391–402.
Wang, B., Fu, X., Liang, X., Deavila, J.M., Wang, Z., Zhao, L., Tian, Q., Zhao, J., Gomez, N.A., Trombetta, S.C., Zhu, M.-J., Du, M. (2017). Retinoic acid induces white adipose tissue browning by increasing adipose vascularity and inducing beige adipogenesis of PDGFRα+ adipose progenitors. Cell Discovery, 3, art. no. 17036.
Wang, J., Ke, W., Bao, R., Hu, X., Chen, F. (2017). Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: a review. Annals of the New York Academy of Sciences, 1398(1), 83–98.
Wang, J., Li, D., Wang, P., Hu, X., Chen, F. (2019). Ginger prevents obesity through regulation of energy metabolism and activation of browning in high-fat diet-induced obese mice. The Journal of Nutritional Biochemistry, 70, 105–115.
Wang, L., Wei, Y., Ning, C., Zhang, M., Fan, P., Lei, D., Du, J., Gale, M., Ma, Y., Yang, Y. (2019). Ellagic acid promotes browning of white adipose tissues in high-fat diet-induced obesity in rats through suppressing white adipocyte maintaining genes. Endocrine Journal, 66(10), 923–936.
Wang, S., Liang, X., Yang, Q., Fu, X., Rogers, C.J., Zhu, M., Rodgers, B.D., Jiang, Q., Dodson, M.V., Du, M. (2015). Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. International Journal of Obesity, 39(6), 967–976.
Wang, Shan, Wang, X., Ye, Z., Xu, C., Zhang, M., Ruan, B., Wei, M., Jiang, Y., Zhang, Y., Wang, L., Lei, X., Lu, Z. (2015). Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way. Biochemical and Biophysical Research Communications, 466(2), 247–253.
Wang, Y., Xin, X., Jin, Z., Hu, Y., Li, X., Wu, J., Jin, M. (2011). Anti-diabetic effects of pentamethylquercetin in neonatally streptozotocin-induced diabetic rats. European Journal of Pharmacology, 668(1-2), 347–353.
Watras, A.C., Buchholz, A.C., Close, R.N., Zhang, Z., Schoeller, D.A. (2007). The role of conjugated linoleic acid in reducing body fat and preventing holiday weight gain. International Journal of Obesity (2005), 31(3), 481–487.
Weitkunat, K., Stuhlmann, C., Postel, A., Rumberger, S., Fankhänel, M., Woting, A., Petzke, K.J., Gohlke, S., Schulz, T.J., Blaut, M., Klaus, S., Schumann, S. (2017). Short-chain fatty acids and inulin, but not guar gum, prevent diet-induced obesity and insulin resistance through differential mechanisms in mice. Scientific Reports, 7(1), art. no. 6109.
Wendel, A.A., Purushotham, A., Liu, L.-F., Belury, M.A. (2009). Conjugated linoleic acid induces uncoupling protein 1 in white adipose tissue of ob/ob mice. Lipids, 44(11), 975–982.
Weng, Q., Chen, L., Ye, L., Lu, X., Yu, Z., Wen, C., Chen, Y., Huang, G. (2019). Determination of licochalcone A in rat plasma by UPLC–MS/MS and its pharmacokinetics. Acta Chromatographica, 31(4), 262–265.
Wijerathne, T.D., Kim, J.H., Kim, M.J., Kim, C.Y., Chae, M.R., Lee, S.W., Lee, K.P. (2019). Onion peel extract and its constituent, quercetin inhibits human Slo3 in a pH and calcium dependent manner. The Korean Journal of Physiology & Pharmacology, 23(5), 381–392.
Wisniewski, O., Malinowska, M., Gibas-Dorna, M. (2018). Physiologically-induced adipocyte browning. Advances in Hygiene and Experimental Medicine, 72, 499–511.
Wisniewski, O.W. (2019). Physiology of adipose tissue. In H. Krauss (Eds.), Physiology of Nutrition, PZWL Wydawnictwo Lekarskie, Warsaw, Poland, pp. 25–56.
Wong, J.M.W., de Souza, R., Kendall, C.W.C., Emam, A., Jenkins, D.J.A. (2006). Colonic health: fermentation and short chain fatty acids. Journal of Clinical Gastroenterology, 40(3), 235–243.
Wu, J., Boström, P., Sparks, L.M., Ye, L., Choi, J.H., Giang, A.-H., Khandekar, M., Nuutila, P., Schaart, G., Huang, K., Tu, H., van Marken Lichtenbelt, W.D., Hoeks, J., Enerbäck, S., Schrauwen, P., Spiegelman, B.M. (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 150(2), 366–376.
Xing, T., Kang, Y., Xu, X., Wang, B., Du, M., Zhu, M.-J. (2018). Raspberry supplementation improves insulin signaling and promotes brown-like adipocyte development in white adipose tissue of obese mice. Molecular Nutrition & Food Research, 62(5), art. no. 1701035.
Yoneshiro, T., Aita, S., Matsushita, M., Kayahara, T., Kameya, T., Kawai, Y., Iwanaga, T., Saito, M. (2013). Recruited brown adipose tissue as an antiobesity agent in humans. The Journal of Clinical Investigation, 123(8), 3404–3408.
Yuzbashian, E., Zarkesh, M., Asghari, G., Hedayati, M., Safarian, M., Mirmiran, P., Khalaj, A. (2018). Is apelin gene expression and concentration affected by dietary intakes? A systematic review. Critical Reviews in Food Science and Nutrition, 58(4), 680–688.
Zhang, F., Ai, W., Hu, X., Meng, Y., Yuan, C., Su, H., Wang, L., Zhu, X., Gao, P., Shu, G., Jiang, Q., Wang, S. (2018). Phytol stimulates the browning of white adipocytes through the activation of AMP-activated protein kinase (AMPK) α in mice fed high-fat diet. Food & Function, 9(4), 2043–2050.
Zhang, H.Q., Chen, S.Y., Wang, A.S., Yao, A.J., Fu, J.F., Zhao, J.S., Chen, F., Zou, Z.Q., Zhang, X.H., Shan, Y.J., Bao, Y.P. (2016). Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization. Molecular Nutrition & Food Research, 60(10), 2185–2197.
Zhang, M., Xin, Y., Feng, K., Yin, B., Kan, Q., Xiao, J., Cao, Y., Ho, C.-T., Huang, Q. (2020). Comparative analyses of bioavailability, biotransformation, and excretion of nobiletin in lean and obese rats. Journal of Agricultural and Food Chemistry, 68(39), 10709–10718.
Zhang, X., Zhang, Q.-X., Wang, X., Zhang, L., Qu, W., Bao, B., Liu, C.-A., Liu, J. (2016). Dietary luteolin activates browning and thermogenesis in mice through an AMPK/PGC1α pathway-mediated mechanism. International Journal of Obesity, 40(12), 1841–1849.
Zhao, D., Yuan, B., Kshatriya, D., Polyak, A., Simon, J., Bello, N., Wu, Q. (2019). Bioavailability and metabolism of raspberry ketone with potential implications for obesity prevention (OR34-05-19). Current Developments in Nutrition, 3(Suppl. 1), art. no. nzz031.OR34-05-19.
Zhao, M., Chen, X. (2014). Eicosapentaenoic acid promotes thermogenic and fatty acid storage capacity in mouse subcutaneous adipocytes. Biochemical and Biophysical Research Communications, 450(4), 1446–1451.
Zhuang, P., Lu, Y., Shou, Q., Mao, L., He, L., Wang, J., Chen, J., Zhang, Y., Jiao, J. (2019). Differential anti-adipogenic effects of eicosapentaenoic and docosahexaenoic acids in obesity. Molecular Nutrition & Food Research, 63(14), art. no. e1801135.
Zhuang, P., Shou, Q., Lu, Y., Wang, G., Qiu, J., Wang, J., He, L., Chen, J., Jiao, J., Zhang, Y. (2017). Arachidonic acid sex-dependently affects obesity through linking gut microbiota-driven inflammation to hypothalamus-adipose-liver axis. Biochimica Et Biophysica Acta. Molecular Basis of Disease, 1863(11), 2715–2726.
Zou, T., Chen, D., Yang, Q., Wang, B., Zhu, M.-J., Nathanielsz, P.W., Du, M. (2017). Resveratrol supplementation of high-fat diet-fed pregnant mice promotes brown and beige adipocyte development and prevents obesity in male offspring. The Journal of Physiology, 595(5), 1547–1562.
Zou, T., Wang, B., Yang, Q., de Avila, J.M., Zhu, M.-J., You, J., Chen, D., Du, M. (2018). Raspberry promotes brown and beige adipocyte development in mice fed high-fat diet through activation of AMP-activated protein kinase (AMPK) α1. The Journal of Nutritional Biochemistry, 55, 157–164.
Zu, Y., Overby, H., Ren, G., Fan, Z., Zhao, L., Wang, S. (2018). Resveratrol liposomes and lipid nanocarriers: Comparison of characteristics and inducing browning of white adipocytes. Colloids and Surfaces B: Biointerfaces, 164, 414–423.