Search for Author, Title, Keyword
Melatonin Supplementation Decreases Aerobic Exercise Training Induced-Lipid Peroxidation and Malondialdehyde in Sedentary Young Women
More details
Hide details
Publication date: 2017-09-30
Pol. J. Food Nutr. Sci. 2017;67(3):225–232
Five percent of consumed oxygen produces a number of reactive oxygen species (ROS) including free radicals and other chemical products such as malondialdehyde (MDA). MDA increases lipid peroxidation such as low density lipoproteins cholesterol (LDL-c). Melatonin can decrease MDA and lipid peroxidation, but there are limited data about melatonin supplementation on MDA and lipid peroxidation of women. So the aim of this study was to evaluate the effects of melatonin supplementation on exercise-induced MDA and lipid peroxidation of sedentary young women. Twenty sedentary young (20-25 years old) women were selected and randomly divided into two exercise training-supplement (n=10) and exercise training (n=10) groups. Pretest/posttest body mass, BMI, rest heart rate (RHR), body fat percent, menstrual cycle, blood sampling for MDA and lipid profile were collected. Aerobic exercise training was performed for 8 weeks, triple weekly. Melatonin supplementation was ingested at 3 mg/day for exercise training-supplement. Results showed that the long term exercise training increased MDA concentrations, and melatonin supplementation significantly suppressed MDA surge (-25.2±2.87; 95% CI=-30.91 to -19.49). Moreover, post-exercise training LDL-c levels significantly declined due to melatonin supplementation in sedentary young women (19.5±2.41; 95% CI=12.272 to 25.728). We concluded that 3 mg melatonin supplementation following aerobic exercise training would attenuate ROS and improve lipid profile of young sedentary women.
Acuna-Castroviejo D., Escames G., Rodriguez M.I., Lopez L.C., Melatonin role in the mitochondrial function. Front. Biosci., 2007, 12, 947-963.
Acuna-Castroviejo D., Martin M., Macias M., Escames G., Leon J., Khaldy H., et al., Melatonin, mitochondria, and cellular bioenergetics. J. Pineal Res., 2001, 30, 65-74.
Agil A., Navarro-Alarcon M., Ruiz R., Abuhamadah S., El-Mir M.Y., Vazquez G.F., Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats. J. Pineal Res., 2011, 50, 207-212.
Alessio H.M., Goldfarb A.H., Cutler R.G., MDA content increases in fast- and slow-twitch skeletal muscle with intensity of exercise in a rat. Am. J. Physiol., 1988, 255, C874-877.
Atkinson G., Holder A., Robertson C., Gant N., Drust B., Reilly T., et al., Effects of melatonin on the thermoregulatory responses to intermittent exercise. J. Pineal Res., 2005a, 39, 353-359.
Atkinson G., Jones H., Edwards B.J., Waterhouse J.M., Effects of daytime ingestion of melatonin on short-term athletic performance. Ergonomics, 2005b, 48, 1512-1522.
Bailey D.M., Lawrenson L., McEneny J., Young I.S., James P.E., Jackson S.K., et al., Electron paramagnetic spectroscopic evidence of exercise-induced free radical accumulation in human skeletal muscle. Free Radic. Res., 2007, 41, 182-190.
Bas P., Romagnoli M., Gomez-Cabrera M.C., Bas J.L., Aura J.V., Franco N., et al., Beneficial effects of aerobic training in adolescent patients with moderate idiopathic scoliosis. Eur. Spine J., 2011, 20 Suppl 3, 415-419.
Bhattacharyya S., Luan J., Challis B., Keogh J., Montague C., Brennand J., et al., Sequence variants in the melatonin-related receptor gene (GPR50) associate with circulating triglyceride and HDL levels. J. Lipid Res., 2006, 47, 761-766.
Borges Lda S., Dermargos A., da Silva Junior E.P., Weimann E., Lambertucci R.H., Hatanaka E., Melatonin decreases muscular oxidative stress and inflammation induced by strenuous exercise and stimulates growth factor synthesis. J. Pineal Res., 2015, 58, 166-172.
Brown G.C., Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem. J., 1992, 284, 1-13.
Bulbuller N., Dogru O., Umac H., Gursu F., Akpolat N., The effects of melatonin and pentoxiphylline on L-arginine induced acute pancreatitis. Ulus. Travma. Acil. Cerrahi. Derg., 2005, 11, 108-114.
Camarda S.R., Tebexreni A.S., Pafaro C.N., Sasai F.B., Tambeiro V.L., Juliano Y., et al., Comparison of maximal heart rate using the prediction equations proposed by Karvonen and Tanaka. Arq. Bras. Cardiol., 2008, 91, 311-314.
Casella-Filho A., Chagas A.C., Maranhao R.C., Trombetta I.C., Cesena F.H., Silva V.M., et al., Effect of exercise training on plasma levels and functional properties of high-density lipoprotein cholesterol in the metabolic syndrome. Am. J. Cardiol., 2011, 107, 1168-1172.
Chan T.Y., Tang P.L., Effect of melatonin on the maintenance of cholesterol homeostasis in the rat. Endocrine Res., 1995, 21, 681-696.
Child R.B., Wilkinson D.M., Fallowfield J.L., Donnelly A.E., Elevated serum antioxidant capacity and plasma malondialdehyde concentration in response to a simulated half-marathon run. Med. Sci. Sports Exerc., 1998, 30, 1603-1607.
Col C., Dinler K., Hasdemir O., Buyukasik O., Bugdayci G., Oxidative stress and lipid peroxidation products: effect of pinealectomy or exogenous melatonin injections on biomarkers of tissue damage during acute pancreatitis. Hepatobiliary. Pancreat. Dis. Int., 2010, 9, 78-82.
Coskun S., Ozer C., Gonul B., Take G., Erdogan D., The effect of repeated tryptophan administration on body weight, food intake, brain lipid peroxidation and serotonin immunoreactivity in mice. Mol. Cell. Biochem., 2006, 286, 133-138.
Crespo E., Macias M., Pozo D., Escames G., Martin M., Vives F., et al., Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. Faseb. J., 1999, 13, 1537-1546.
De Sanctis V., Bernasconi S., Bianchin L., Bona G., Bozzola M., Buzi F., et al., Onset of menstrual cycle and menses features among secondary school girls in Italy: A questionnaire study on 3,783 students. Indian J. Endocrinol. Metab., 2014, 18, S84-92.
Dillard C.J., Litov R.E., Savin W.M., Dumelin E.E., Tappel A.L., Effects of exercise, vitamin E, and ozone on pulmonary function and lipid peroxidation. J. Appl. Physiol. Respir. Environ. Exerc. Physiol., 1978, 45, 927-932.
El-Sokkary G.H., Khidr B.M., Younes H.A., Role of melatonin in reducing hypoxia-induced oxidative stress and morphological changes in the liver of male mice. Eur. J. Pharmacol., 2006, 540, 107-114.
Finaud J., Lac G., Filaire E., Oxidative stress : relationship with exercise and training. Sports Med., 2006, 36, 327-358.
Greene N.P., Martin S.E., Crouse S.F., Acute exercise and training alter blood lipid and lipoprotein profiles differently in overweight and obese men and women. Obesity (Silver Spring)., 2012, 20, 1618-1627.
Gul M., Demircan B., Taysi S., Oztasan N., Gumustekin K., Siktar E., et al., Effects of endurance training and acute exhaustive exercise on antioxidant defense mechanisms in rat heart. Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 2006, 143, 239-245.
Hara M., Iigo M., Ohtani-Kaneko R., Nakamura N., Suzuki T., Reiter R.J., et al., Administration of melatonin and related indoles prevents exercise-induced cellular oxidative changes in rats. Biol. Signals., 1997, 6, 90-100.
Kozirog M., Poliwczak A.R., Duchnowicz P., Koter-Michalak M., Sikora J., Broncel M., Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. J. Pineal Res., 2011, 50, 261-266.
Lunt H., Roiz De Sa D., Roiz De Sa J., Allsopp A., Validation of one-mile walk equations for the estimation of aerobic fitness in British military personnel under the age of 40 years. Mil. Med., 2013, 178, 753-759.
Maldonado M.D., Manfredi M., Ribas-Serna J., Garcia-Moreno H., Calvo J.R., Melatonin administrated immediately before an intense exercise reverses oxidative stress, improves immunological defenses and lipid metabolism in football players. Physiol. Behav., 2012, 105, 1099-1103.
Maldonado M.D., Mora-Santos M., Naji L., Carrascosa-Salmoral M.P., Naranjo M.C., Calvo J.R., Evidence of melatonin synthesis and release by mast cells. Possible modulatory role on inflammation. Pharmacol. Res., 2010, 62, 282-287.
Moflehi D., Kok L.Y., Tengku-Kamalden T.F., Amri S., Effect of single-session aerobic exercise with varying intensities on lipid peroxidation and muscle-damage markers in sedentary males. Glob. J. Health. Sci., 2012, 4, 48-54.
Nielsen F., Mikkelsen B.B., Nielsen J.B., Andersen H.R., Grandjean P., Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin. Chem., 1997, 43, 1209-1214.
Nishida S., Metabolic effects of melatonin on oxidative stress and diabetes mellitus. Endocrine., 2005, 27, 131-136.
Powers S.K., Jackson M.J., Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev., 2008, 88, 1243-1276.
Selkow N.M., Pietrosimone Bg Fau - Saliba S.A.., Saliba S.A., Subcutaneous thigh fat assessment: a comparison of skinfold calipers and ultrasound imaging. J. Athl. Train., 2011, 46, 50-54.
Shephard R.J., Qualified exercise and fitness as professionals and exercise prescription: evolution of the PAR-Q and canadian aerobic fitness test. J. Phys. Act. Health., 2015, 454-461.
Spirlandeli A.L., Deminice R., Jordao A.A., Plasma malondialdehyde as biomarker of lipid peroxidation: effects of acute exercise. Int. J. Sports Med., 2014, 35, 14-18.
Tamura H., Nakamura Y., Narimatsu A., Yamagata Y., Takasaki A., Reiter R.J., et al., Melatonin treatment in peri- and postmenopausal women elevates serum high-density lipoprotein cholesterol levels without influencing total cholesterol levels. J. Pineal Res., 2008, 45, 101-105.
Tutkun E., Melatonin administration in rats with acute swimming exercise prevents lipid peroxidation in muscle tissue. Int. J.Acad. Res., 2013, 5.
Viitala P.E., Newhouse I.J., LaVoie N., Gottardo C., The effects of antioxidant vitamin supplementation on resistance exercise induced lipid peroxidation in trained and untrained participants. Lipids Health Dis., 2004, 3- 14.
Zouhal H., Jacob C., Delamarche P., Gratas-Delamarche A., Catecholamines and the effects of exercise, training and gender. Sports Med., 2008, 38, 401-423.
Melatonin - Molecular Biology, Clinical and Pharmaceutical Approaches
Moghaddam Rastegar, Sadegh Abbasian, Mohammad Khazaie
Melatonin supplementation ameliorates oxidative stress, antioxidant status and physical performances recovery during a soccer training camp
Mohamed Farjallah, Omar Hammouda, Mahmoud Ben, Ahmed Graja, Kais Ghattassi, Mariem Boudaya, Kamel Jammoussi, Zouheir Sahnoun, Nizar Souissi
Biological Rhythm Research
Melatonin ingestion after exhaustive late-evening exercise attenuate muscle damage, oxidative stress, and inflammation during intense short term effort in the following day in teenage athletes
Mohamed Cheikh, Khouloud Makhlouf, Kais Ghattassi, Ahmed Graja, Salyma Ferchichi, Choumous Kallel, Mallek Houda, Nizar Souissi, Omar Hammouda
Chronobiology International
Effect of melatonin supplementation on oxidative stress parameters: A systematic review and meta-analysis
Mojgan Morvaridzadeh, Ehsan Sadeghi, Shahram Agah, Seyed Nachvak, Siavash Fazelian, Fatemeh Moradi, Emma Persad, Javad Heshmati
Pharmacological Research
Effects of melatonin supplementation on oxidative stress: a systematic review and meta-analysis of randomized controlled trials
Parivash Ghorbaninejad, Fatemeh Sheikhhossein, Farhang Djafari, Aliyu Tijani, Saba Mohammadpour, Sakineh Shab-Bidar
Hormone Molecular Biology and Clinical Investigation
Exercise-induced oxidative stress and melatonin supplementation: current evidence
Joanna Kruk, Basil Aboul-Enein, Ewa Duchnik
The Journal of Physiological Sciences