Melatonin Supplementation Decreases Aerobic Exercise Training Induced-Lipid Peroxidation and Malondialdehyde in Sedentary Young Women
 
More details
Hide details
Publication date: 2017-09-30
 
Pol. J. Food Nutr. Sci. 2017;67(3):225–232
 
KEYWORDS
ABSTRACT
Five percent of consumed oxygen produces a number of reactive oxygen species (ROS) including free radicals and other chemical products such as malondialdehyde (MDA). MDA increases lipid peroxidation such as low density lipoproteins cholesterol (LDL-c). Melatonin can decrease MDA and lipid peroxidation, but there are limited data about melatonin supplementation on MDA and lipid peroxidation of women. So the aim of this study was to evaluate the effects of melatonin supplementation on exercise-induced MDA and lipid peroxidation of sedentary young women. Twenty sedentary young (20-25 years old) women were selected and randomly divided into two exercise training-supplement (n=10) and exercise training (n=10) groups. Pretest/posttest body mass, BMI, rest heart rate (RHR), body fat percent, menstrual cycle, blood sampling for MDA and lipid profile were collected. Aerobic exercise training was performed for 8 weeks, triple weekly. Melatonin supplementation was ingested at 3 mg/day for exercise training-supplement. Results showed that the long term exercise training increased MDA concentrations, and melatonin supplementation significantly suppressed MDA surge (-25.2±2.87; 95% CI=-30.91 to -19.49). Moreover, post-exercise training LDL-c levels significantly declined due to melatonin supplementation in sedentary young women (19.5±2.41; 95% CI=12.272 to 25.728). We concluded that 3 mg melatonin supplementation following aerobic exercise training would attenuate ROS and improve lipid profile of young sedentary women.
 
CITATIONS (5):
1.
Melatonin - Molecular Biology, Clinical and Pharmaceutical Approaches
Moghaddam Rastegar, Sadegh Abbasian, Mohammad Khazaie
 
2.
Melatonin supplementation ameliorates oxidative stress, antioxidant status and physical performances recovery during a soccer training camp
Mohamed Farjallah, Omar Hammouda, Mahmoud Ben, Ahmed Graja, Kais Ghattassi, Mariem Boudaya, Kamel Jammoussi, Zouheir Sahnoun, Nizar Souissi
Biological Rhythm Research
 
3.
Melatonin ingestion after exhaustive late-evening exercise attenuate muscle damage, oxidative stress, and inflammation during intense short term effort in the following day in teenage athletes
Mohamed Cheikh, Khouloud Makhlouf, Kais Ghattassi, Ahmed Graja, Salyma Ferchichi, Choumous Kallel, Mallek Houda, Nizar Souissi, Omar Hammouda
Chronobiology International
 
4.
Effect of melatonin supplementation on oxidative stress parameters: A systematic review and meta-analysis
Mojgan Morvaridzadeh, Ehsan Sadeghi, Shahram Agah, Seyed Nachvak, Siavash Fazelian, Fatemeh Moradi, Emma Persad, Javad Heshmati
Pharmacological Research
 
5.
Effects of melatonin supplementation on oxidative stress: a systematic review and meta-analysis of randomized controlled trials
Parivash Ghorbaninejad, Fatemeh Sheikhhossein, Farhang Djafari, Aliyu Tijani, Saba Mohammadpour, Sakineh Shab-Bidar
Hormone Molecular Biology and Clinical Investigation
 
eISSN:2083-6007
ISSN:1230-0322