Search for Author, Title, Keyword
Effect of High Methionine and Folic Acid Diet on The Level of Homocysteine and Lipid Profile in Experimental Rats
More details
Hide details
Publication date: 2017-09-30
Pol. J. Food Nutr. Sci. 2017;67(3):219-224
The aim of this study was to reduce the level of homocysteine (Hcy) by high-methionine dietary supplementation of folic acid and to evaluate changes in lipid parameters in blood serum of experimental rats. The animals were randomly divided into seven groups (n=6, male), and were fed seven different diets for 52 days. The rodents were fed with the AIN-93G semi-synthetic diet (group I), supplemented with 32 g of methionine/kg diet (group II), whereas groups III-VII were fed with AIN-93G semi-synthetic diet supplemented with 32 g of methionine/kg diet and 2, 4, 8, 18 and 28 g of folic acid/kg diet, respectively. In rats serum, the content of homocysteine, total cholesterol level, HDL fraction and triacylglycerols were assessed enzymatically. In addition, the LDL+VLDL cholesterol content was calculated. The folic acid content in the diet was found to be highly negatively correlated with the homocysteine content (r=-0.95) and negatively correlated with the triacylglycerols content (r=-0.94) in the serum of rats. In the serum of rats which were fed the methionine diet with the highest-folic acid supplementation (28 mg folic acid/kg diet), the homocysteine and triglyceride contents were significantly lower, compared to the other types of experimental diets used.
Berg J.M., Tymoczko J.L., Stryer L., Biochemistry. 2005, PWN Warszawa, Poland (in Polish).
Bieżanowska-Kopeć R., Leszczyńska T., The effect of the addition of methionine to the AIN-93G semi-synthetic diet on the levels of homocysteine and lipids in experimental rats. J. Nutr. Health Aging, 2012, 16, 395-400.
Bieżanowska-Kopeć R., Nosek M., Pisulewski P.M., Effect of graded dietary levels of folic acid, vitamin B12 and vitamin B6 on serum homocysteine concentrations in rats fed semi-purified diets. Ann. Nutr. Metabol., 2007, 51(Suppl 1), 264.
Bønaa K.H., Njølstad I., Ueland P.M., Schirmer H., Tverdal A., Steigen T., Wang H., Nordrehaug J.E., Arnesen E., Rasmussen K., Homocysteine lowering and cardiovascular events after acute myocardial infarction. N. Engl. Med., 2006, 354, 1578-1588.
Carnicer R., Navarro M.A., Arbonés-Mainar J.M., Acín S., Guzmán M.A., Surra J.C., Arnal C., De Las Heras M., Blanco-Vaca F., Osada J., Folic acid supplementation delays atherosclerotic lesion development in apoE-deficient mice. Life Sci. J., 2007, 80, 638–643.
Chien K.L., Hsu H.C., Sung F.C., Su T.C., Chen M.F., Lee Y.T., Metabolic syndrome as a risk factor for coronary heart disease and stroke: An 11-year prospective cohort in Taiwan community. Atherosclerosis, 2007, 194, 214-221.
Clarke Z.L., Moat S.J., Miller A.L., Randall M.D., Lewis M.J., Lang D., Differential effects of low and high dose folic acid on endothelial dysfunction in a murine model of mild hyperhomocysteinaemia. Eur. J. Pharmacol., 2006, 551, 92-97.
De Bree A., Verschuren W.M.M., Kromhout D., Kluijtmans L.A.J., Blom H.J., Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol. Rev., 2002, 54, 599–618.
Geisel J., Hennen B., Hübner U., Knapp J.P., Herrmann W., The impact of hyperhomocysteinemia as a cardiovascular risk factor in the prediction of coronary heart disease. Clin. Chem. Lab. Med., 2003, 41, 1513-1517.
Hainaut P., Jaumotte C., Verhelst D., Wallemacq P., Gala J.-C., Lavenne E., Heusterspreute M., Zech F., Moriau M., Hyperhomocysteinemia and venous thromboembolism: a risk factor more prevalent in the elderly and in idiopathic cases. Thromb. Res., 2002, 106, 121-125.
Herrmann W., Obeid R., Hübner U., Jouma M., Geisel J., Homocysteine in relation to C-reactive protein and low-density lipoprotein cholesterol in assessment of cardiovascular risk. Cell Mol. Biol. (Noisy-legrand), 2004, 50, 895–901.
Karakuła H., Opolska A., Kowal A., Domański M., Płotka A., Perzyński J., Does diet affect our mood? The significance of folic acid and homocysteine. Pol. Merk. Lek., 2009, 26, 136-141 (in Polish).
Lentz S.R., Mechanisms of homocysteine-induced atherothrombosis. J. Thromb. Haemost., 2005, 3, 1646–1654.
Liao D., Tan H., Hui R., Li Z., Jiang X., Gaubatz J., Yang F., Durante W., Chan L., Schafer A.I., Pownall H.J., Yang X., Wang H., Hyperhomocysteinemia decreases circulating high-density lipoprotein by inhibiting apolipoprotein A-I Protein synthesis and enhancing HDL cholesterol clearance. Circ. Res., 2006, 99, 598–606.
Liu C., Wang Q., Guo H., Xia M., Yuan Q., Hu Y., Zhu H., Hou M., Ma J., Tang Z., Ling W., Plasma S-Adenosylhomocysteine is a better biomarker of atherosclerosis than homocysteine in apolipoprotein E-deficient mice fed high dietary methionine. J. Nutr., 2008, 138, 311-315.
Liu D., Gao W., Liang E., Wang S., Lin W., Zhang W., Jia Q., Guo R., Zhang J., Effects of allicin on hyperhomocysteinemia-induced experimental vascular endothelial dysfunction. Eur. J. Pharmacol., 2013, 714, 163-169.
Moundras C., Remesy C., Levrat M., Demigne C., Methionine deficiency in rats fed soy protein induces hypercholesterolemia and potentiates lipoprotein susceptibility to peroxidation. Metabolism, 1995, 44, 1146-1152.
Namekata K., Enokido Y., Ishii I., Nagai Y., Harada T., Kimura H., Abnormal lipid metabolism in cystathionine beta-synthase-deficient mice, an animal model for hyperhomocysteinemia. J. Biol. Chem., 2004, 279, 52961–52969.
Navab M., Anantharamaiah G.M., Reddy S.T., Van Lenten B.J., Wagner A.C., Hama S., Hough G., Bachini E., Garber D.W., Mishra V.K., Palgunachari M.N., Fogelman A.M., An oral apoJ peptide renders HDL antiinflammatory in mice and monkeys and dramatically reduces atherosclerosis in apolipoprotein E-null mice. Arterioscler. Thromb. Vasc. Biol., 2005, 25, 1932–1937.
Ng M.N., Kitos T.E., Cornell R.B., Contribution of lipid second messengers to the regulation of phosphatidylcholine synthesis during cell cycle re-entry. Biochim. Biophys. Acta, 2004, 1686, 85–99.
Noga A.A., Stead L.M., Zhao Y., Brosnan M.E., Brosnan J.T., Vance D.E. Plasma homocysteine is regulated by phospholipid methylation. J. Biol. Chem., 2003, 278, 5952–5955.
Obeid R., Herrmann W., Homocysteine and lipids: S-Adenosyl methionine as a key intermediate. FEBS Letters, 2009, 583, 1215–1225.
Oda H., Functions of sulfur-containing amino acids in lipid metabolism. J. Nutr., 2006, 136, 16665-16695.
Oda H., Fukui H., Hitomi Y., Yoshida A., Alteration of serum lipoprotein metabolism by polychlorinated biphenyls and methionine in rats fed a soybean protein diet. J. Nutr., 1991, 121, 925-933.
Orzechowska-Pawiłojć A., Lewczuk A., Sworczak K., The influence of thyroid hormones on homocysteine and atherosclerotic vascular disease. Pol. J. Endoc., 2005, 56, 194-202 (in Polish; English abstract).
Preynat A., Lapierre H., Thivierge M.C., Palin M.F., Cardinault N., Matte J.J., Desrochers A., Girard C.L., Effects of supplementary folic acid and vitamin B12 on hepatic metabolism of dairy cows according to methionine supply. J. Dairy Sci., 2010, 93, 2130–2142.
Reeves P.G., Nielsen F.H., Fahey G.C., AIN-93 purified diets for laboratory rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A rodent diet. J. Nutr., 1993, 123, 1939-1951.
Refsum H., Smith A.D., Ueland P.M., Nexo E., Clarke R., McPartlin J., Johnston C., Engbaek F., Schneede J., Mcpartlin C., Scott J.M., Facts and recommendations about total homocysteine determinations: an expert opinion. Clin. Chem., 2004, 50, 3–32.
Rizki G., Arnaboldi L., Gabrielli B., Yan J., Lee G.S., Ng R.K., Turner S.M., Badger T.M., Pitas R.E., Maher J.J., Mice fed a lipogenic methionine–choline-deficient diet develop hypermetabolism coincident with hepatic suppression of SCD-1. J. Lipid Res., 2006, 47, 2280–2290.
Selhub J., Public health significance of elevated homocysteine. Food Nutr. Bull., 2008, 29(2 Suppl.), S116-S125.
Sharma M., Rai S.K., Tiwari M., Chandra R., Effect of hiperhomocysteinemia on cardiovascular risk factors and initiation of atherosclerosis in Wistar rats. Eur. J. Pharmacol., 2007, 574, 49-60.
Sierakowska-Fijałek A., Baj Z., Kaczmarek P., Stępień M., Rysz J., Estimation of relation between homocysteine concentration and selected lipid parameters and adhesion molecules concentration in children with atherosclerosis risk factors. Pol. Merk. Lek., 2008, 25, 356-360 (in Polish).
Urban M., Atherosclerosis in children and adolescents. 2007, in: Pediatrics - What's New? (ed. E. Otto-Buczkowska). Cornetis sp. z o.o., Wrocław, pp. 302-312 (in Polish).
Vance J.E., Vance D.E., The role of phosphatidylcholine biosynthesis in the secretion of lipoproteins from hepatocytes. Can. J. Biochem. Cell Biol., 1985, 63, 870–881.
Velez-Carrasco W., Merkel M., Twiss Ch.O., Smith J.D., Dietary methionine effects on plasma homocysteine and HDL metabolism in mice. J. Nutr. Biochem., 2008, 19, 362–370.
Williams K.T., Schalinske K.L., Homocysteine metabolism and its relation to health and disease. Biofactors, 2010, 36, 19-24.
Woo C.W., Siow Y.L., Pierce G.N., Choy P.C., Minuk G.Y., Mymin D., Karmin, O., Hyperhomocysteinemia induces hepatic cholesterol biosynthesis and lipid accumulation via activation of transcription factors. Am. J. Physiol. Endocrinol. Metab., 2005, 288, E1002–E1010.
Hepatotoxicity and biochemical evaluation of a novel breakfast food produced from the blend of fonio (Digitaria iburua Stapf) and pigeon pea (Cajanus cajan (L.) Millspaugh) in albino rats
Grace Babarinde, Akos Ebun, Peter Adegbola
Bulletin of the National Research Centre
Journals System - logo
Scroll to top