Search for Author, Title, Keyword
ORIGINAL ARTICLE
Dietary Fiber with Functional Properties Counteracts the Thwarting Effects of Copper Nanoparticles on the Microbial Enzymatic Activity and Short-Chain Fatty Acid Production in the Feces of Rats
 
More details
Hide details
1
Department of Biological Function of Food, Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10 Tuwima Street, 10-748 Olsztyn, Poland
 
2
Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences, 13 Akademicka Street, 20-950 Lublin, Poland
 
3
Department of Microbiology and Food Technology, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 7 Kaliskiego Ave., 85-796 Bydgoszcz, Poland
 
 
Submission date: 2024-08-26
 
 
Acceptance date: 2024-10-16
 
 
Online publication date: 2024-11-19
 
 
Publication date: 2024-11-19
 
 
Corresponding author
Jerzy Juśkiewicz   

Department of Biological Function of Food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
 
 
Pol. J. Food Nutr. Sci. 2024;74(4):363-375
 
KEYWORDS
TOPICS
ABSTRACT
The present study aimed to scrutinize the hypothesis that the dietary addition of fiber with functional properties would prevent the thwarting effects of copper nanoparticles (Cu-NP) on fecal microbial metabolic activity. The Wistar rats were fed for 6 weeks with diets with two different contents of Cu-NP (a recommended dose of 6.5 mg/kg or doubled) and four sources of dietary fiber: control – cellulose; and experimental – pectin, inulin, and psyllium. The activity of bacterial enzymes and short-chain fatty acids (SCFA) production were analyzed in the excreted feces collected on subsequent days of feeding. The inclusion of Cu-NP to the diet, especially in the higher dose tested, resulted in a rapid reduction in the fecal microbial enzymatic activity after only the first day of feeding. The addition of functional fiber to diets containing Cu-NP enhanced bacterial α-glucosidase, β-glucosidase, β-glucuronidase, α-arabinofuranosidase activity and SCFA production vs. diets with control cellulose. That effect was most rapidly evident with pectin, while the effect of inulin or psyllium addition exceeded that of pectin only in some cases, i.e., α-glucosidase activity as well as content of propionic and butyric acids. In conclusion, the high potential of dietary functional fiber in reducing the suppressive effect of Cu-NP on the intestinal microbiota activity should be recognized.
FUNDING
This work was financed from the National Science Centre, Grant No. 2021/41/B/NZ9/01104.
CONFLICT OF INTEREST
Authors declare no conflict of interests.
REFERENCES (42)
1.
Anreddy, R.N.R. (2018). Copper oxide nanoparticles induces oxidative stress and liver toxicity in rats following oral exposure. Toxicology Reports, 5, 903-904. https://doi.org/10.1016/j.toxr....
 
2.
Azam, A., Ahmed, A.S., Oves, M., Khan M.S., Memic, A. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. International Journal of Nanomedicine, 7, 3527-3535. https://doi.org/10.2147/IJN.S2....
 
3.
Badri, D.V., Jackson, M.I., Jewell, D.E. (2021). Dietary protein and carbohydrate levels affect the gut microbiota and clinical assessment in healthy adult cats. Journal of Nutrition, 151(12), 3637-3650. https://doi.org/10.1093/jn/nxa....
 
4.
Bankier, C., Cheong, Y., Mahalingam, S., Edirisinghe, M., Ren, G., Cloutman-Green, E., Ciric, L. (2018). A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells. PLoS One, 13(2), art. no. e0192093. https://doi.org/10.1371/journa....
 
5.
Baravkar, P.N., Sayyed, A.A., Rahane, C.S., Chate, G.P., Wavhale, R.D., Pratinidhi, S.A., Banerjee, S.S. (2021). Nanoparticle properties podulate their pffect on the puman plood punctions. BioNanoScience, 11, 816-824. https://doi.org/10.1007/s12668....
 
6.
Baye, K., Guyot, J.P., Mouquet-Rivier, C. (2017). The unresolved role of dietary fibers on mineral absorption. Critical Reviews in Food Science and Nutrition, 57(5), 949-957, https://doi.org/10.1080/104083....
 
7.
Bell, H.N., Huber, A.K., Singhal, R., Korimerla, N., Rebernick, R.J., Kumar, R., El-Derany, M.O., Sajjakulnukit, P., Das, N.K., Kerk, S.A., Solanki, S., James, J.G., Kim, D., Zhang, L., Chen, B., Mehra, R., Frankel, T.L., Győrffy, B., Fearon, E.R., Pasca di Magliano, M., Gonzalez, F.J., Banerjee, R., Wahl, D.R., Lyssiotis, C.A., Green, M., Shah, Y.M. (2023). Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer. Cell Metabolism, 35(1), 134-149.e6. https://doi.org/10.1016/j.cmet....
 
8.
Cheng, S., Mao, H., Ruan, Y., Wu, C., Xu, Z., Hu, G., Guo, X., Zhang, C., Cao, H., Liu, P. (2020). Copper changes intestinal microbiota of the cecum and rectum in female mice by 16S rRNA gene sequencing. Biological Trace Element Research, 193, 445-455. https://doi.org/10.1007/s12011....
 
9.
Cholewińska, E., Marzec, A., Sołek, P., Fotschki, B., Listos, P., Ognik, K., Juśkiewicz, J. (2023). The effect of copper nanoparticles and a different source of dietary fibre in the diet on the integrity of the small intestine in the rat. Nutrients, 15(7), art. no. 1588. https://doi.org/10.3390/nu1507....
 
10.
Cholewińska, E., Ognik, K., Fotschki, B., Zduńczyk, Z., Juśkiewicz, J. (2018). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS One, 13(5), art. no. e0197083. https://doi.org/10.1371/journa....
 
11.
Deehan, E.C., Zhang, Z., Riva, A., Armet, A.M., Perez-Muñoz, M.E., Nguyen, N.K., Krysa, J.A., Seethaler, B., Zhao, Y.Y., Cole, J., Li, F., Hausmann, B., Spittler, A., Nazare, J.A., Delzenne, N.M., Curtis, J.M., Wismer, W.V., Proctor, S.D., Bakal, J.A., Bischoff, S.C., Knights, D., Field, C.J., Berry, D., Prado, C.M., Walter, J. (2022). Elucidating the role of the gut microbiota in the physiological effects of dietary fiber. Microbiome, 10, art. no. 77. https://doi.org/10.1186/s40168....
 
12.
Ermini, M.L., Voliani, V. (2021). Antimicrobial nano-agents: The copper age. ACS Nano, 15(4), 6008-6029. https://doi.org/10.1021/acsnan....
 
13.
Fiksdal, L., Tryland, I. (2008). Application of rapid enzyme assay techniques for monitoring of microbial water quality. Current Opinion in Biotechnolology, 19(3), 289-294. https://doi.org/10.1016/j.copb....
 
14.
Gao, S., Sun, R., Singh, R., Yu So, S., Chan, C.T.Y., Savidge, T., Hu, M. (2022). The role of gut microbial β-glucuronidase in drug disposition and development. Drug Discovery Today, 27(10), art. no. 103316. https://doi.org/10.1016/j.drud....
 
15.
Gonzales-Eguia, A., Fu, C.-M., Lu, F.-Y., Lien, T.-F. (2009). Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets. Livestock Science, 126(1-3), 122-129. https://doi.org/10.1016/j.livs....
 
16.
Griffin, J.W.D., Bradshaw, P.C. (2019). Effects of a high protein diet and liver disease in an in silico model of human ammonia metabolism. Theoretical Biology and Medical Modelling, 16, art. no. 11. https://doi.org/10.1186/s12976....
 
17.
Gugołek, A., Kowalska, D., Strychalski, J., Ognik, K., Juśkiewicz, J. (2021). The effect of dietary supplementation with silkworm pupae meal on gastrointestinal function, nitrogen retention and blood biochemical parameters in rabbits. BMC Veterinary Research, 17, art. no. 204. https://doi.org/10.1186/s12917....
 
18.
Han, X.Y., Du, W.L., Fan, C.L., Xu, Z.R. (2010). Changes in composition a metabolism of caecal microbiota in rats fed diets supplemented with copper-loaded chitosan nanoparticles. Journal of Animal Physiology and Animal Nutrition, 94(5), 138-144. https://doi.org/10.1111/j.1439....
 
19.
Harris, H.C., Pereira, N., Koev, T., Khimyak, Y.Z., Yakubov, G.E., Warren, F.J. (2023). The impact of psyllium gelation behaviour on in vitro colonic fermentation properties. Food Hydrocolloids, 139, art. no. 108543. https://doi.org/10.1016/j.food....
 
20.
Herman, M., Janiak, M.A., Sadlik, J.K., Piekoszewski, W., Amarowicz, R. (2022). Iron, zinc, copper, manganese and chromium in green teas, their transfer to extracts and correlations between contents of elements and bioactive compounds. Polish Journal of Food and Nutrition Sciences, 72(4), 421-429. https://doi.org/10.31883/pjfns....
 
21.
Jankowski, J., Otowski, K., Kozłowski, K., Pietrzak, P., Ferenc, K., Ognik, K., Juśkiewicz, J., Sawosz, E., Zduńczyk, Z. (2020). Effect of different levels of copper nanoparticles and copper sulfate on morphometric indices, antioxidant status and mineral digestibility in the small intestine of turkeys. Annals of Animal Science, 20(3), 975-990. https://doi.org/10.2478/aoas-2....
 
22.
Jurgoński, A., Juśkiewicz, J., Kowalska, K., Zduńczyk, Z. (2012). Does dietary inulin affect biological activity of a grapefruit flavonoid-rich extract? Nutrition & Metabolism, 9, art. no. 31. https://doi.org/10.1186/1743-7....
 
23.
Juśkiewicz, J., Zduńczyk, Z., Frejnagel, S. (2007). Caecal parameters of rats fed diets supplemented with inulin in exchange for sucrose. Archives of Animal Nutrition, 61(3), 201-210. https://doi.org/10.1080/174503....
 
24.
Kargin, D. (2021). Changes in serum physiological and biochemical parameters of male Swiss Albino mice after oral administration of metal oxide nanoparticles (ZnO, CuO, and ZnO+CuO). Biological Trace Element Research, 199, 4218-4224. https://doi.org/10.1007/s12011....
 
25.
Kiyani, M.M., Butt, M.A., Rehman, H., Mustafa, M., Sajjad, A.G., Shah, S.S.H., Mahmood, T., Bokhari, S.A.I. (2022). Evaluation of antioxidant activity and histopathological changes occurred by the oral ingestion of CuO nanoparticles in monosodium urate crystal-induced hyperuricemic BALB/c mice. Biological Trace Element Research, 200, 217-227. https://doi.org/10.1007/s12011....
 
26.
Lai, M.-J., Huang, Y.-W., Chen, H.-C., Tsao, L.-I., Chang Chien, C.-F., Singh, B., Liu, B.R. (2022). Effect of size and concentration of copper nanoparticles on the antimicrobial activity in Escherichia coli through multiple mechanisms. Nanomaterials, 12(21), art. no. 3715. https://doi.org/10.3390/nano12....
 
27.
Lee, I.C., Ko, J.W., Park, S.H., Lim, J.O., Shin, I.S., Moon, C., Kim, S.H., Heo, J.D., Kim, J.C. (2016). Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. International Journal of Nanomedicine, 2016(11), 2883-2900. https://doi.org/10.2147/IJN.S1....
 
28.
Lee, S.Y., Lee, D.Y., Kang, J.H., Kim, J.H., Jeong, J.W., Kim, H.W., Kim, J.H., Kim, H.C., Kim, J.C. (2022). Relationship between gut microbiota and colorectal cancer: Probiotics as a potential strategy for prevention. Food Research International, 156, art. no. 111327. https://doi.org/10.1016/j.food....
 
29.
Mahapatra, O., Bhagat, M., Gopalakrishnan, C., Arunachalam, K.D. (2008). Ultrafine dispersed CuO nanoparticles and their antibacterial activity. Journal of Experimental Nanoscience, 3(3), 185-193. https://doi.org/10.1080/174580....
 
30.
Makki, K., Deehan, E.C., Walter, J., Bäckhed, F. (2018). The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe, 23(6), 705-715. https://doi.org/10.1016/j.chom....
 
31.
Malavolta, M., Piacenza, F., Basso, A., Giacconi, R., Costarelli, L., Mocchegiani, E. (2015). Serum copper to zinc ratio: Relationship with aging and health status. Mechanisms of Ageing and Development, 151, 93-100. https://doi.org/10.1016/j.mad.....
 
32.
Markowiak-Kopeć, P., Śliżewska, K. (2020). The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients, 12(4), art. no. 1107. https://doi.org/10.3390/nu1204....
 
33.
McRorie, Jr J.W. (2015). Psyllium is not fermented in the human gut. Neurogastroenterology & Motility, 27, 1681-1682. https://doi.org/10.1111/nmo.12....
 
34.
Olivares, M., Uauy, R. (1996). Copper as an essential nutrient. American Journal of Clinical Nutrition, 63(5), 791S-796S. https://doi.org/10.1093/ajcn/6....
 
35.
Perler, B.K., Friedman, ES., Wu, G.D. (2023). The role of the gut microbiota in the relationship between diet and human health. Annual Review of Physiology, 85, 449-468. https://doi.org/10.1146/annure....
 
36.
Pineda, L., Sawosz, E., Vadalasetty, K.P., Chwalibog, A. (2013). Effect of copper nanoparticles on metabolic rate and development of chicken embryos. Animal Feed Science and Technology, 186(1-2), 125-129. https://doi.org/10.1016/j.anif....
 
37.
Poulouxi, S., Prodromidis, M.I. (2020). Indirect determination of Escherichia coli based on β-D-glucuronidase activity and the voltammetric oxidation of phenolphthalein at graphite screen-printed electrodes. Journal of Electroanalytical Chemistry, 879, art. no. 114752. https://doi.org/10.1016/j.jele....
 
38.
Strychalski, J., Juskiewicz, J., Kowalska, D., Gugołek, A. (2021). Performance indicators and gastrointestinal response of rabbits to dietary soybean meal replacement with silkworm pupae and mealworm larvae meals. Archives of Animal Nutrition, 75(4), 294-310. https://doi.org/10.1080/174503....
 
39.
Utembe, W., Tlotleng, N., Kamng'ona, A.W. (2022). A systematic review on the effects of nanomaterials on gut microbiota. Current Research in Microbial Sciences, 3, art. no. 100118. https://doi.org/10.1016/j.crmi....
 
40.
Żary-Sikorska, E., Juśkiewicz, J., Jundziłł, A., Rybka, J. (2016). Effects of diets varying in the type of dietary fibre and its combination with polyphenols on gut function, microbial activity and antioxidant status in rats. Journal of Animal and Feed Sciences, 25(3), 250-258. https://doi.org/10.22358/jafs/....
 
41.
Zhang, W., Roy, S., Rhim, J.W. (2023). Copper-based nanoparticles for biopolymer-based functional films in food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 22(3), 1933-1952. https://doi.org/10.1111/1541-4....
 
42.
Zhang, Y., Zhou, J., Dong, Z., Li, G., Wang, J., Li, Y., Wan, D., Yang, H., Yin, Y. (2019). Effect of dietary copper on intestinal microbiota and antimicrobial resistance profiles of Escherichia coli in weaned piglets. Frontiers in Microbiology, 10, art. no. 2808. https://doi.org/10.3389/fmicb.....
 
eISSN:2083-6007
ISSN:1230-0322
Journals System - logo
Scroll to top