Search for Author, Title, Keyword
ORIGINAL ARTICLE
Pithellobium dulce (Roxb.) Benth. Fruit Flour Intake Enhances Short-Chain Fatty Production and Glucose Metabolism in BALB/c Mice
 
More details
Hide details
1
Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil., Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, C.P. 44340, Guadalajara, Jalisco, México
 
2
Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco, México
 
3
Departamento de Farmacobiología, Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco, México
 
 
Submission date: 2024-12-04
 
 
Acceptance date: 2025-02-18
 
 
Corresponding author
Alba R. Hernández García   

Departamento de Clínicas de la Reproducción Humana, Crecimiento y Desarrollo Infantil., Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara., Sierra Mojada 950, Col. Independencia, 44340, Guadalajara, Mexico
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Pithecellobium dulce (Roxb.) Benth. (P. dulce) is a legume native to Mexico with a rich profile of bioactive compounds, including dietary fiber (DF) and phenolics, which have shown potential health benefits. This study investigates the effects of P. dulce fruit flour (PDF) on glucose metabolism and short-chain fatty acid (SCFAs) production in healthy BALB/c mice. Four groups – unmanipulated control (UC), vehicle control (VC), positive control inulin-treated (PC), and PDF-treated – received oral solutions for 60 days. Variables such as body weight and food intake were monitored, glucose and insulin tolerance tests were conducted, SCFAs in cecal contents were analyzed via gas chromatography, besides goblet cells in the descending colon were quantified. PDF in 100 g dry matter contained 57.44 g of carbohydrates and 10.48 g of DF including 7.77 g of insoluble DF and 2.71 g of soluble DF. Total phenolic content of PDF was 526 mg GAE/100 g. PDF consumption significantly improved glycemic regulation, as evidenced by lower blood glucose levels and enhanced glucose clearance in tolerance tests compared to controls. This was accompanied by increased SCFAs production, particularly propionic and butyric acids, associated with improved glucose homeostasis. PDF also promoted intestinal health by significantly increasing goblet cells in the descending colon, indicating enhanced epithelial barrier integrity. These effects were attributed to DF fermentation and phenolic compound activity, which boosted SCFAs production and reduced postprandial glycemia. These findings highlight P. dulce as a promising functional ingredient for improving glycemic control and intestinal health, providing a foundation for future research in metabolic disorders and prebiotic therapies.
ACKNOWLEDGEMENTS
We extend our sincere gratitude to Dr. Sergio Zepeda Nuño, from the Universidad de Guadalajara, Centro Universitario de Ciencias de la Salud, Departamento de Microbiología y Patología, Guadalajara, Jalisco, México, for his invaluable support in performing the histological analyses and Goblet cell counts, which were essential for the success of this study. Alba Rossana Hernández García wants to thank Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), México, for the financial support through a scholarship granted for her Doctoral degree.
FUNDING
This work was supported by the University of Guadalajara through the PROSNI 2022, PROSNI 2023, and PROINPEP 2023 Programs.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
REFERENCES (72)
1.
Adefegha, S.A. (2018). Functional foods and nutraceuticals as dietary intervention in chronic diseases; novel perspectives for health promotion and disease prevention. Journal of Dietary Supplements, 15(6), 977–1009. https://doi.org/10.1080/193902....
 
2.
Ahrén, B. (2022). Glucose-dependent insulinotropic polypeptide secretion after oral macronutrient ingestion: The human literature revisited and a systematic study in model experiments in mice. Journal of Diabetes Investigation, 13(10), 1655–1665. https://doi.org/10.1111/jdi.13....
 
3.
Alexander, C., Swanson, K.S., Fahey, G.C., Garleb, K.A. (2019). Perspective: Physiological importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Advances in Nutrition, 10(4), 576–589. https://doi.org/10.1093/advanc....
 
4.
Andrikopoulos, S., Blair, A.R., Deluca, N., Fam, B.C., Proietto, J. (2008). Evaluating the glucose tolerance test in mice. American Journal of Physiology. Endocrinology and Metabolism, 295(6), E1323–E1332. https://doi.org/10.1152/ajpend....
 
5.
AOAC (1995). Official Methods of Analysis (16th ed.). The Association of Official Analytical Chemists International, Gaithersburg, MD, USA.
 
6.
Ayala, J.E., Samuel, V.T., Morton, G.J., Obici, S., Croniger, C.M., Shulman, G.I., Wasserman, D.H., McGuinness, O.P. (2010). Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Disease Models & Mechanisms, 3(9-10), 525-534. https://doi.org/10.1242/dmm.00....
 
7.
Bae, Y.J., Bak, Y.K., Kim, B., Kim, M.S., Lee, J.H., Sung, M.K. (2011). Coconut-derived D-xylose affects postprandial glucose and insulin responses in healthy individuals. Nutrition Research and Practice, 5(6), 533-539. https://doi.org/10.4162/nrp.20....
 
8.
Benedé-Ubieto, R., Estévez-Vázquez, O., Ramadori, P., Cubero, F.J., Nevzorova, Y.A. (2020). Guidelines and considerations for metabolic tolerance tests in mice. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020(13), 439-450. https://doi.org/10.2147/DMSO.S....
 
9.
Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology, 28(1), 25-30. https://dx.doi.org/10.1016/S00....
 
10.
Broadhurst, R.B., Jones, W.T. (1978). Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture, 29(9), 788-794. https://doi.org/10.1002/jsfa.2....
 
11.
Carré, M.H., Haynes, D. (1922). The estimation of pectin as calcium pectate and the application of this method to the determination of the soluble pectin in apples. The Biochemical Journal, 16(1), 60–69. https://doi.org/10.1042/bj0160....
 
12.
Corrêa, R.O., Castro, P.R., Fachi, J.L., Nirello, V.D., El-Sahhar, S., Imada, S., Pereira, G.V., Pral, L.P., Araújo, N.V.P., Fernandes, M.F., Matheus, V.A., de Souza Felipe, J., Dos Santos Pereira Gomes, A.B., de Oliveira, S., de Rezende Rodovalho, V., de Oliveira, S.R.M., de Assis, H.C., Oliveira, S.C., Dos Santos Martins, F., Martens, E., Collona, M., Varga-Wiesz, P., Vinolo, M.A.R. (2023). Inulin diet uncovers complex diet-microbiota-immune cell interactions remodeling the gut epithelium. Microbiome, 11(1), art. no. 90. https://doi.org/10.1186/s40168....
 
13.
Dalile, B., Van Oudenhove, L., Vervliet, B., Verbeke, K. (2019). The role of short-chain fatty acids in microbiota-gut-brain communication. Nature Reviews. Gastroenterology & Hepatology, 16(8), 461-478. https://doi.org/10.1038/s41575....
 
14.
De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., Vinera, J., Zitoun, C., Duchampt, A., Bäckhed, F., Mithieux, G. (2014). Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell, 156(1-2), 84-96. https://doi.org/10.1016/j.cell....
 
15.
Den Besten, G., Bleeker, A., Gerding, A., van Eunen, K., Havinga, R., van Dijk, T. H., Oosterveer, M.H., Jonker, J. W., Groen, A.K., Reijngoud, D.J., Bakker, B.M. (2015). Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes, 64(7), 2398–2408. https://doi.org/10.2337/db14-1....
 
16.
FAO (2003). Food energy – methods of analysis and conversion factors. Food and Agriculture Organization of the United Nations, Rome, Italy 2023. FAO Food and Nutrition Paper 77. https://www.fao.org/3/y5022e/y....
 
17.
Fotschki, B., Jurgoński, A., Fotschki, J., Majewski, M., Ognik, K., Juśkiewicz, J. (2019). Dietary chicory inulin-rich meal exerts greater healing effects than fructooligosaccharide preparation in rats with trinitrobenzenesulfonic acid-induced necrotic colitis. Polish Journal of Food and Nutrition Sciences, 69(2), 147-155. https://doi.org/10.31883/pjfns....
 
18.
Fusco, W., Lorenzo, M.B., Cintoni, M., Porcari, S., Rinninella, E., Kaitsas, F., Lener, E., Mele, M.C., Gasbarrini, A., Collado, M.C., Cammarota, G., Ianiro, G. (2023). Short-chain fatty-acid-producing bacteria: Key components of the human gut microbiota. Nutrients, 15(9), art. no. 2211. https://doi.org/10.3390/nu1509....
 
19.
Gelding, S.V., Robinson, S., Lowe, S., Niththyananthan, R., Johnston, D.G. (1994). Validation of the low dose short insulin tolerance test for evaluation of insulin sensitivity. Clinical Endocrinology, 40(5), 611-615. https://doi.org/10.1111/j.1365....
 
20.
Giuntini, E.B., Sardá, F.A.H., de Menezes, E.W. (2022). The effects of soluble dietary fibers on glycemic response: An overview and futures perspectives. Foods, 11(23), art. no. 3934. https://doi.org/10.3390/foods1....
 
21.
Gowd, V., Karim, N., Shishir, M.R.I., Xie, L., Chen, W. (2019). Dietary polyphenols to combat the metabolic diseases via altering gut microbiota. Trends in Food Science and Technology, 93, 81–93. https://doi.org/10.1016/j.tifs....
 
22.
Guccio, N., Gribble, F.M., Reimann, F. (2022). Glucose-dependent insulinotropic polypeptide – a postprandial hormone with unharnessed metabolic potential. Annual Review of Nutrition, 42, 21-44. https://doi.org/10.1146/annure....
 
23.
Gustafsson, J.K., Johansson, M.E.V. (2022). The role of goblet cells and mucus in intestinal homeostasis. Nature Reviews. Gastroenterology & Hepatology, 19(12), 785–803. https://doi.org/10.1038/s41575....
 
24.
Hernández-Carrión, M., Caicedo Narvaez, S. (2022). Evaluation of antioxidant activity, phenolic content, anthocyanins, and flavonoids of fresh and dried 'Biloxi' blueberries. Vitae, 29(3), art. no. 348980. https://doi.org/10.17533/udea.....
 
25.
Holland, C., Ryden, P., Edwards, C.H., Grundy, M.M. (2020). Plant cell walls: Impact on nutrient bioaccessibility and digestibility. Foods, 9(2), art. no. 201. https://doi.org/10.3390/foods9....
 
26.
Hunt, J.E., Hartmann, B., Schoonjans, K., Holst, J.J., Kissow, H. (2021). Dietary fiber is essential to maintain intestinal size, L-Cell secretion, and intestinal integrity in mice. Frontiers in Endocrinology, 12, art. no. 640602. https://doi.org/10.3389/fendo.....
 
27.
Isken, F., Klaus, S., Osterhoff, M., Pfeiffer, A.F., Weickert, M.O. (2010). Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice. The Journal of Nutritional Biochemistry, 21(4), 278-284. https://doi.org/10.1016/j.jnut....
 
28.
Kang, G.G., Francis, N., Hill, R., Waters, D., Blanchard, C., Santhakumar, A.B. (2020). Dietary polyphenols and gene expression in molecular pathways associated with type 2 diabetes mellitus: A review. International Journal of Molecular Sciences, 21(1), art. no. 140. https://doi.org/10.3390/ijms21....
 
29.
Le Bourgot, C., Apper, E., Blat, S., Respondek, F. (2018). Fructo-oligosaccharides and glucose homeostasis: A systematic review and meta-analysis in animal models. Nutrition & Metabolism, 15, art. no. 9. https://doi.org/10.1186/s12986....
 
30.
Li, L., Zhang, L., Zhou, L., Jin, M., Xu, L. (2021). Chain length-dependent inulin alleviates diet-induced obesity and metabolic disorders in mice. Food Science & Nutrition, 9(7), 3470-3482. https://doi.org/10.1002/fsn3.2....
 
31.
Li, M., Chi, X., Wang, Y., Setrerrahmane, S., Xie, W., Xu, H. (2022). Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduction and Targeted Therapy, 7, art. no. 216. https://doi.org/10.1038/s41392....
 
32.
Liang, Z., Cheng, L., Zhong, G.-Y., Liu, R.H. (2014). Antioxidant and antiproliferative activities of twenty-four Vitis vinifera grapes. PLoS One, 9(8), art. no. e105146. https://doi.org/10.1371/journa....
 
33.
Lightowler, H., Thondre, S., Holz, A., Theis, S. (2018). Replacement of glycaemic carbohydrates by inulin-type fructans from chicory (oligofructose, inulin) reduces the postprandial blood glucose and insulin response to foods: Report of two double-blind, randomized, controlled trials. European Journal of Nutrition, 57(3), 1259-1268. https://doi.org/10.1007/s00394....
 
34.
López-Angulo, G., Montes-Avila, J., Sánchez-Ximello, L., Díaz-Camacho, S.P., Miranda-Soto, V., López-Valenzuela, J.A., Delgado-Vargas, F. (2018). Anthocyanins of Pithecellobium dulce (Roxb.) Benth. fruit associated with high antioxidant and α-glucosidase inhibitory activities. Plant Foods for Human Nutrition, 73(4), 308-313. https://doi.org/10.1007/s11130....
 
35.
Mao, B., Gu, J., Li, D., Cui, S., Zhao, J., Zhang, H., Chen, W. (2018). Effects of different doses of fructooligosaccharides (FOS) on the composition of mice fecal microbiota, especially the Bifidobacterium composition. Nutrients, 10(8), art. no. 1105. https://doi.org/10.3390/nu1008....
 
36.
Mao, T., Huang, F., Zhu, X., Wei, D., Chen, L. (2021). Effects of dietary fiber on glycemic control and insulin sensitivity in patients with type 2 diabetes: A systematic review and meta-analysis. Journal of Functional Foods, 82, art. no. 104500. https://doi.org/10.1016/j.jff.....
 
37.
Marin, N., Moragon, A., Gil, D., Garcia-Garcia, F., Bisbal, V. (2023). Acclimation and blood sampling: Effects on stress markers in C57Bl/6J mice. Animals, 13(18), art. no. 2816. https://doi.org/10.3390/ani131....
 
38.
Mattila, P., Kumpulainen, J. (2002). Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. Journal of Agricultural and Food Chemistry, 50(13), 3660–3667. https://doi.org/10.1021/jf0200....
 
39.
Mendoza-Herrera, K., Florio, A.A., Moore, M., Marrero, A., Tamez, M., Bhupathiraju, S.N., Mattei, J. (2021). The leptin system and diet: A mini review of the current evidence. Frontiers in Endocrinology, 12, art. no. 749050. https://doi.org/10.3389/fendo.....
 
40.
Mihailović, N.R., Mihailović, V.B., Ćirić, A.R., Srećković, N.Z., Cvijović, M.R., Joksović, L.G. (2019). Analysis of wild raspberries (Rubus idaeus L.) optimization of the ultrasonic-assisted extraction of phenolics and a new insight in phenolics bioaccessibility. Plant Foods for Human Nutrition, 74, 399-404. https://doi.org/10.1007/s11130....
 
41.
Mondal, D., Awana, M., Mandal, S., Pandit, K., Singh, A., Syeunda, C.O., Thandapilly, S.J., Krishnan, V. (2024). Functional foods with a tailored glycemic response based on food matrix and its interactions: Can it be a reality? Food Chemistry: X, 22, art. no. 101358. https://doi.org/10.1016/j.foch....
 
42.
Moo-Huchin, V.M., Moo-Huchin, M.I., Estrada-León, R.J., Cuevas-Glory, L., Estrada-Mota, I.A., Ortiz-Vázquez, E., Betancur-Ancona, D., Sauri-Duch, E. (2015). Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chemistry, 166, 17-22. https://doi.org/10.1016/j.food....
 
43.
Nakajima, H., Nakanishi, N., Miyoshi, T., Okamura, T., Hashimoto, Y., Senmaru, T., Majima, S., Ushigome, E., Asano, M., Yamaguchi, M., Mori, J., Sakui, N., Sasano, R., Yamazaki, M., Hamaguchi, M., Fukui, M. (2022). Inulin reduces visceral adipose tissue mass and improves glucose tolerance through altering gut metabolites. Nutrition & Metabolism, 19(1), art. no. 50. https://doi.org/10.1186/s12986....
 
44.
NMX-F-083-1986 (1986). Secretaría de Comercio y Fomento Industrial. (1986). Alimentos: Determinación de humedad en productos alimenticios.
 
45.
Nogal, A., Valdes, A.M., Menni, C. (2021). The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes, 13(1), art. no. 1897212. https://doi.org/10.1080/194909....
 
46.
NOM-062-ZOO-1999 (1999). Secretaría de Agricultura, Ganadería y Desarrollo Rural. (1999). Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio.
 
47.
NOM-086-SSA1-1994 (1994). Secretaría de Salud. Bienes y servicios. Alimentos y bebidas no alcohólicas con modificaciones en su composición. Especificaciones nutrimentales.
 
48.
Ojo, M.A. (2022). Tannins in foods: Nutritional implications and processing effects of hydrothermal techniques on underutilized hard-to-cook legume seeds – A review. Preventive Nutrition and Food Science, 27(1), 14-19. https://doi.org/10.3746/pnf.20....
 
49.
Patterson, Z.R., Abizaid, A. (2013). Stress induced obesity: Lessons from rodent models of stress. Frontiers in Neuroscience, 7, art. no. 130. https://doi.org/10.3389/fnins.....
 
50.
Pio-León, J., Diaz-Camacho, S., Montes-Ávila, J., López-Angulo, G., Delgado-Vargas, F. (2013). Nutritional and nutraceutical characteristics of white and red Pithecellobium dulce (Roxb.) Benth fruits. Fruits, 68(5), 397-408. https://doi.org/10.1051/fruits....
 
51.
Pradeepa, S., Subramanian, S.P., Kaviyarasan, V. (2013). Biochemical evaluation of antidiabetic properties of Pithecellobium dulce fruits studied in streptozotocin induced experimental diabetic rats. International Journal of Herbal Medicine, 1(4), 21-28.
 
52.
Preethi S., Mary Saral, A. (2016). Screening of natural polysaccharides extracted from the fruits of Pithecellobium dulce as a pharmaceutical adjuvant. International Journal of Biological Macromolecules, 92, 347-356. https://doi.org/10.1016/j.ijbi....
 
53.
Prpa, E.J., Bajka, B.H., Ellis, P.R., Butterworth, P.J., Corpe, C.P., Hall, W.L. (2021). A systematic review of in vitro studies evaluating the inhibitory effects of polyphenol-rich fruit extracts on carbohydrate digestive enzymes activity: A focus on culinary fruits consumed in Europe. Critical Reviews in Food Science and Nutrition, 61(22), 3783-3803. https://doi.org/10.1080/104083....
 
54.
Psichas, A., Sleeth, M.L., Murphy, K.G., Brooks, L., Bewick, G.A., Hanyaloglu, A.C., Ghatei, M.A., Bloom, S.R., Frost, G. (2015). The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. International Journal of Obesity, 39(3), 424-429. https://doi.org/10.1038/ijo.20....
 
55.
Rajala, M.W., Obici, S., Scherer, P.E., Rossetti, L. (2003). Adipose-derived resistin and gut-derived resistin-like molecule-beta selectively impair insulin action on glucose production. The Journal of Clinical Investigation, 111(2), 225-230. https://doi.org/10.1172/JCI165....
 
56.
Rao, G.N., Nagender, A., Satyanarayana, A., Rao, D.G. (2011). Preparation, chemical composition and storage studies of quamachil (Pithecellobium dulce L.) aril powder. Journal of Food Science and Technology, 48(1), 90-95. https://doi.org/10.1007/s13197....
 
57.
Ribeiro, W.R., Vinolo, M.A.R., Calixto, L.A., Ferreira, C.M. (2018). Use of gas chromatography to quantify short chain fatty acids in the serum, colonic luminal content and feces of mice. Bio-protocol, 8(22), art. no. e3089. https://doi.org/10.21769/BioPr....
 
58.
Rodríguez-Mejía, U.U., Viveros-Paredes, J.M., Zepeda-Morales, A.S.M., Carrera-Quintanar, L., Zepeda-Nuño, J.S., Velázquez-Juárez, G., Delgado-Rizo, V., García-Iglesias, T., Camacho-Padilla, L.G., Varela-Navarro, E., Anguiano-Sevilla, L.A., Franco-Torres, E.M., López-Roa, R.I. (2022). β-Caryophyllene: A therapeutic alternative for intestinal barrier dysfunction caused by obesity. Molecules, 27(19), art. no. 6156. https://doi.org/10.3390/molecu....
 
59.
Salvi, P.S., Cowles, R.A. (2021). Butyrate and the intestinal epithelium: Modulation of proliferation and inflammation in homeostasis and disease. Cells, 10(7), art. no. 1775. https://doi.org/10.3390/cells1....
 
60.
Scazzocchio, B., Varì, R., Filesi, C., D'Archivio, M., Santangelo, C., Giovannini, C., Iacovelli, A., Silecchia, G., Li Volti, G., Galvano, F., Masella, R. (2011). Cyanidin-3-O-β-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARγ activity in human omental adipocytes. Diabetes, 60(9), 2234-2244. https://doi.org/10.2337/db10-1....
 
61.
Shams Ardekani, M.R., Hajimahmoodi, M., Oveisi, M.R., Sadeghi, N., Jannat, B., Ranjbar, A.M., Gholam, N., Moridi, T. (2011). Comparative antioxidant activity and total flavonoid content of persian pomegranate (Punica granatum L.) cultivars. Iranian Journal of Pharmaceutical Research, 10(3), 519-524.
 
62.
Shortt, C., Hasselwander, O., Meynier, A., Nauta, A., Fernández, E.N., Putz, P., Rowland, I., Swann, J., Türk, J., Vermeiren, J., Antoine, J.M. (2018). Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. European Journal of Nutrition, 57(1), 25–49. https://doi.org/10.1007/s00394....
 
63.
Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158. https://doi.org/10.5344/ajev.1....
 
64.
Steppan, C.M., Bailey, S.T., Bhat, S., Brown, E.J., Banerjee, R.R., Wright, C.M., Patel, H.R., Ahima, R.S., Lazar, M.A. (2001). The hormone resistin links obesity to diabetes. Nature, 409(6818), 307-312. https://doi.org/10.1038/350530....
 
65.
Su, K.Z., Li, Y.R., Zhang, D., Yuan, J.H., Zhang, C.S., Liu, Y., Song, L.M., Lin, Q., Li, M.W., Dong, J. (2019). Relation of circulating resistin to insulin resistance in type 2 diabetes and obesity: A systematic review and meta-analysis. Frontiers in Physiology, 10, art. no. 1399. https://doi.org/10.3389/fphys.....
 
66.
Tsitsou, S., Athanasaki, C., Dimitriadis, G., Papakonstantinou, E. (2023). Acute effects of dietary fiber in starchy foods on glycemic and insulinemic responses: A systematic review of randomized controlled crossover trials. Nutrients, 15(10), art. no. 2383. https://doi.org/10.3390/nu1510....
 
67.
Wall-Medrano, A., González-Aguilar, G.A., Loarca-Piña, G.F., López-Díaz, J.A., Villegas-Ochoa, M.A., Tortoledo-Ortiz, O., Olivas-Aguirre, F.J., Ramos-Jiménez, A., Robles-Zepeda, R. (2016). Ripening of Pithecellobium dulce (Roxb.) Benth. [Guamúchil] fruit: Physicochemical, chemical and antioxidant changes. Plant Foods for Human Nutrition, 71(4), 396-401. https://doi.org/10.1007/s11130....
 
68.
Wang, X., Qi, Y., Zheng, H. (2022). Dietary polyphenol, gut microbiota, and health benefits. Antioxidants, 11(6), art. no. 1212. https://doi.org/10.3390/antiox....
 
69.
Williamson, G. (2022). Effects of polyphenols on glucose-induced metabolic changes in healthy human subjects and on glucose transporters. Molecular Nutrition & Food Research, 66(21), art. no. e2101113. https://doi.org/10.1002/mnfr.2....
 
70.
Yahfoufi, N., Alsadi, N., Jambi, M., Matar, C. (2018). The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 10(11), art. no. 1618. https://doi.org/10.3390/nu1011....
 
71.
Yang, J., Qin, K., Sun, Y., Yang, X. (2024). Microbiota-accessible fiber activates short-chain fatty acid and bile acid metabolism to improve intestinal mucus barrier in broiler chickens. Microbiology Spectrum, 12(1), art. no. e0206523. https://doi.org/10.1128/spectr....
 
72.
Zhang, Q., Yu, H., Xiao, X., Hu, L., Xin, F., Yu, X. (2018). Inulin-type fructan improves diabetic phenotype and gut microbiota profiles in rats. PeerJ, 6, art. no. e4446. https://doi.org/10.7717/peerj.....
 
eISSN:2083-6007
ISSN:1230-0322
Journals System - logo
Scroll to top