ORIGINAL ARTICLE
Effect of Selected Drying Methods on the Cannabinoid Profile of Cannabis sativa L. var. sativa Inflorescences and Leaves
More details
Hide details
1
Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology – State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
Submission date: 2024-05-26
Acceptance date: 2024-11-05
Corresponding author
Joanna Kanabus
Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology – State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
KEYWORDS
TOPICS
ABSTRACT
The hemp industry uses traditional drying methods based on ambient temperature. However, this method does not guarantee a high-quality dried product due to the possibility of mold growth. The present study aimed to evaluate the effect of the drying method for parts of the Cannabis sativa L. var. sativa plant (ambient temperature drying without light, freeze-drying, and convective drying at 50, 60, and 70°C) on the content of 17 cannabinoids. The leaves were separated, and the inflorescences were subdivided according to size. Analyses were performed using UHPLC-HESI-MS. Traditional drying of the inflorescences increased the total cannabinoid content to 17.608–22.209 mg/g DM relative to fresh material (8.562–11.386 mg/g DM). Increasing the drying temperature by 10°C significantly enhanced cannabinoid degradation in the dried inflorescences. The most significant increase in cannabidiol and Δ9-tetrahydrocannabinol content in the inflorescences was observed during traditional drying (up to 10 times). The greatest decrease in the content of the main acid precursors of cannabinoids, i.e., cannabidiolic acid and Δ9-tetrahydrocannabinolic acid A, was observed during convective drying (up to 3 times). The present study is one of the first to compare the effects of drying methods on the profile of cannabinoids in selected parts of the Cannabis sativa L. plant.
FUNDING
The research has not received external funding.
CONFLICT OF INTEREST
The authors declare no competing financial interest.
REFERENCES (32)
1.
Addo, P.W., Chouvin-Bosse, T., Taylor, N., Macpherson, S., Paris, M., Lefsrud, M. (2023). Freeze-drying Cannabis sativa L. using real-time relative humidity monitoring and mathematical modeling for the cannabis industry. Industrial Crops Products, 199, art. no. 116754.
https://doi.org/10.1016/j.indc....
2.
Aizpurua-Olaizola, O., Omar, J., Navarro, P., Olivares, M., Etxebarria, N., Usobiaga, A. (2014). Identification and quantification of cannabinoids in Cannabis sativa L. plant by high performance liquid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 406, 7549-7560.
https://doi.org/10.1007/s00216....
3.
Aizpurua-Olaizola, O., Soydaner, U., Öztürk, E., Schibano, D., Simsir, Y., Navarro, P., Etxebarria, N., Usobiaga, A. (2016). Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plant from different chemotypes. Journal of Natural Products, 79(2), 324-331.
https://doi.org/10.1021/acs.jn....
4.
Baker, D., Pryce, G., Giovannoni, G., Thompson, A.J. (2003). The therapeutic potential of Cannabis. The Lancet Neurology, 2(5), 291-298.
https://doi.org/10.1016/S1474-....
5.
Challa, S.K.R., Misra, N.N., Martynenko, A. (2021). Drying of cannabis – state of the practices and future needs. Drying Technology, 39(14), 2055–2064.
https://doi.org/10.1080/073739....
6.
Chen, C., Wongso, I., Putnam, D., Khir, R., Pan, Z. (2021). Effect of hot air and infrared drying on the retention of cannabidiol and terpenes in industrial hemp (Cannabis sativa L.). Industrial Crops Products, 172, art. no. 114051.
https://doi.org/10.1016/j.indc....
7.
Das, P.C., Vista, A.R., Tabil, L.G., Baik, O. (2022), Postharvest operations of Cannabis and their effect of cannabinoid content: A review. Bioengineering, 9(8), art. no. 364.
https://doi.org/10.3390/bioeng....
8.
Das, P.C., Bail, O.D., Tabil, L.G. (2024). Microwave-infrared drying of cannabis (Cannabis sativa L.): Effect on drying characteristics, energy consumption and quality. Industrial Crops and Products, 211, 118215.
https://doi.org/10.1016/j.indc....
9.
Di Cesare, L.F., Forni, E., Viscardi, D., Nani, R.C. (2003). Changes in the chemical composition of basil caused by different drying procedures. Journal of Agricultural and Food Chemistry, 51(12), 3575–3581.
https://doi.org/10.1021/jf0210....
10.
Esfandi, A., Mehrafarin, A., Jari, S.K., Badi, H.N., Larijani, K. (2024). Variability in color and phytochemical properties of hemp (Cannabis sativa L.) upon drying techniques; an opportunity for industrial products. Journal of Medicinal Plants and By-products, 13(1), 79-86.
https://doi.org/10.22034/JMPB.....
11.
Farinon, B., Molinari, R., Costantini, L., Merendino, N. (2020). The seed of industrial hemp (Cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition. Nutrients, 12(7) art. no. 1935.
https://doi.org/10.3390/nu1207....
12.
García-Valverde, M.T., Sánchez-Carnerero Callado, C., Díaz-Liñán, M.C., Sánchez de Medina, V., Hidalgo-García, J., Nadal, X., Hanuš, L., Ferreiro-Vera, C. (2022). Effect of temperature in the degradation of cannabinoids: From a brief residence in the gas chromatography inlet port to a longer period in thermal treatments. Frontiers in Chemistry, 10, art. no. 1038729.
https://doi.org/10.3389/fchem.....
13.
Grafström, K., Andersson, K., Pettersson, N., Dalgaard, J., Dunne, S.J. (2019). Effects of long term storage on secondary metabolite profiles of cannabis resin. Forensic Science International, 301, 331-340.
https://doi.org/10.1016/j.fors....
14.
Kanabus, J., Bryła, M., Roszko, M., Modrzewska, M., Pierzgalski, A. (2021). Cannabinoids – Characteristics and potential for use in food production. Molecules, 26(21), art. no. 6723.
https://doi.org/10.3390/molecu....
15.
Kanabus, J., Bryła, M., Roszko, M. (2023). The development, validation, and application of a UHPLC-HESI-MS method for the determination of 17 cannabinoids in Cannabis sativa L. var. sativa plant material. Molecules, 28(23), art. no. 8008.
https://doi.org/10.3390/molecu....
16.
Kiani, S., Minaei, S., Ghasemi-Varnamkhasti, M. (2018). Real-time aroma monitoring of mint (Mentha spicata L.) leaves during the drying process using electronic nose system. Measurement, 124, 447-452.
https://doi.org/10.1016/j.meas....
17.
Kim, A.L., Yun, Y.J., Choi, H.W., Hong, Ch.H., Shim, H.J., Lee, J.H., Kim, Y.Ch. (2022). Profiling cannabinoid contents and expression levels of corresponding biosynthetic genes in commercial Cannabis (Cannabis sativa L.) cultivars. Plants, 11(22), art. no. 3088.
https://doi.org/10.3390/plants....
18.
Knezeivc, F., Nikolai, A., Marchart, R., Sosa, S., Tubaro, A., Novak, J. (2021). Residues of herbal hemp leaf teas – How much of the cannabinoids remain? Food Control, 127, art. no. 108146.
https://doi.org/10.1016/j.food....
19.
Kwaśnica, A., Pachura, N., Masztalerz, K., Figiel, A., Zimmer, A., Kupczyński, R., Wujcikowska, K., Carbonell-Barrachina, A.A., Szumny, A., Różański, H. (2020). Volatile composition and sensory properties as quality attributes of fresh and dried hemp flowers (Cannabis sativa L.). Foods, 9(8), art. no. 1118.
https://doi.org/10.3390/foods9....
20.
Kwaśnica, A., Pachura, N., Carbonell-Barrachina, Á.A., Issa-Issa, H., Szumny, D., Figiel, A., Masztalerz, K., Klemens, M., Szumny, A. (2023). Effect of drying methods on chemical and sensory properties of Cannabis sativa leaves. Molecules, 28(24), art. no. 8089.
https://doi.org/10.3390/molecu....
21.
Meija, J., McRae, G., Miles, Ch.O., Melanson, J.E. (2022). Thermal stability of cannabinoids in dried cannabis: a kinetic study. Analytical and Bioanalytical Chemistry, 414(1), 377-384.
https://doi.org/10.1007/s00216....
22.
Pellati, F., Borgonetti, V., Brighenti, V., Biagi, M., Benvenuti, S., Corsi, L. (2018). Cannabis sativa L., and non psychoactive cannabinoids: The chemistry and role against oxidative stress, inflammation, and cancer. BioMed Research International, 2018, art. no. 1691428.
https://doi.org/10.1155/2018/1....
23.
Park, S.H., Pauli, C.S., Gostin, E.L., Staples, S.K., Seifried, D., Kinney, C., Vanden Heuvel, B.D. (2022). Effects of short-term environmental stresses on the onset of cannabinoid production in young immature flowers of industrial hemp (Cannabis sativa L.). Journal of Cannabis Research, 4, art. no. 1.
https://doi.org/10.1186/s42238....
24.
Regulation EU 2021/2115 of the European Parliament and of the Council of 2 December 2021 establishing rules on support for strategic plans to be drawn up by Member States under the common agricultural policy (CAP Strategic Plans) and financed by the European Agricultural Guarantee Fund (EAGF) and by the European Agricultural Fund for Rural Development (EAFRD) and repealing Regulations (EU) No 1305/2013 and (EU) No 1307/2013.
https://eur-lex.europa.eu/eli/....
25.
Regulation EU 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006.
https://eur-lex.europa.eu/eli/....
26.
Taura, F., Sirikantaramas, S., Shoyama, Y., Yoshikai, K., Shoyama, Y., Morimoto, S. (2007). Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Letters, 581(16), 2929-2934.
https://doi.org/10.1016/j.febs....
27.
Thamkaew, G., Sjoholm, I., Galindo, F.G. (2021). A review of drying methods for improving the quality of dried herbs. Critical Reviews in Food Science and Nutrition, 61(11), 1763-1786.
https://doi.org/10.1080/104083....
28.
Turner, J.C., Mahlberg, P.G. (1984). Effects of sample treatment on chromatographic analysis of cannabinoids in Cannabis sativa L. (Cannabaceae). Journal of Chromatography A, 283, 165–171.
https://doi.org/10.1016/S0021-....
29.
Ubeed, H.M.S.A.L., Wills, R.B.H., Chandrapala, J. (2022). Post-harvest operations to generate high-quality medicinal cannabis products: a systematic review. Molecules, 27(5), art. no. 1719.
https://doi.org/10.3390/molecu....
30.
Uziel, A., Milay, L., Procaccia, S., Cohen, R., Burstein, A., Sulimani, L., Shreiber-Livne, I., Lewitus, D., Meiri, D. (2024). Solid-state microwave drying for medical cannabis inflorescences: A rapid and controlled alternative to traditional drying. Cannabis and Cannabinoid Research, 9(1), 397-408.
http://doi.org/10.1089/can.202....
31.
Wang, M., Wang, Y.H., Avula, B., Radwan, M.M., Wanas, A.S., van Antwerp, J., Parcher, J.F., ElSohly, M., Khan, I.A. (2016). Decarboxylation study of acidic cannabinoids: A novel approach using Ultra-High-Performance Supercritical Fluid Chromatography/Photodiode Array-Mass Spectrometry. Cannabis and Cannabinoid Research, 1(1), 262–271.
https://doi.org/10.1089/can.20....
32.
Xie, Z., Mi, Y., Kong, L., Gao, M., Chen, S., Chen, W., Meng, X., Sun, W., Chen, S., Xu, Z. (2023). Cannabis sativa: Origin and history, glandular trichome development, and cannabinoid biosynthesis. Horticulture Research, 10(9), art. no. 150.
https://doi.org/10.1093/hr/uha....