Search for Author, Title, Keyword
ORIGINAL ARTICLE
Predicting the Botanical Origin of Honeys with Chemometric Analysis According to Their Antioxidant and Physicochemical Properties
 
More details
Hide details
1
Department of Food Quality and Safety Management, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poland
 
 
Submission date: 2018-09-20
 
 
Final revision date: 2019-04-10
 
 
Acceptance date: 2019-04-15
 
 
Publication date: 2019-05-30
 
 
Corresponding author
Anna Maria Kaczmarek   

Food Quality and Safety Management, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
 
 
Pol. J. Food Nutr. Sci. 2019;69(2):191-201
 
KEYWORDS
TOPICS
ABSTRACT
The aim of this study was to develop models based on Linear Discriminant Analysis (LDA), Classification and Regression Trees (C&RT), and Artificial Neural Network (ANN) for the prediction of the botanical origin of honeys using their physicochemical parameters as well as their antioxidative and thermal properties. Also Principal Component Analysis (PCA) and Cluster Analysis (CA) were performed as initial steps of data mining. The datasets consisted of 72 honey samples (false acacia, rape, buckwheat, honeydew, linden, nectar-honeydew and multifloral) obtained from different regions of Poland and collected between April 2014 and November 2016. Ash content, pH, free acidity, colorimetric coordinates in the CIELAB space (L*, a*, b*, h*, C*), total phenolics content, antioxidant activity, and glass transition temperatures (Tg) of the honey samples were determined. The first four principal components accounted for about 85% of the total variance. PC1 was highly correlated with colour intensity, the hue angle (h*), and total phenolics content, whereas PC2 was dominated by chroma (C*) value and glass transition temperatures (Tg). The CA dendrogram displays two clusters: one with light coloured honey samples and second with dark coloured honey samples. On the basis of the LDA analysis, the colour parameters possessed the highest discrimination power according to the botanical origin of honey samples. The models based on ANN and C&RT algorithms were characterized by 100% accuracy. Study results demonstrate that the chemometric approach enables high-accuracy classification of honeys according to their botanical origin.
FUNDING
Research was supported by the Ministry of Science and Higher Education (Poland) as part of the statutory activities of the Department of Food Quality and Safety Management of the Poznań University of Life Sciences, Poznań.
 
REFERENCES (48)
1.
Ahmed, J., Prabhu, S.T., Raghavan, G.S.V., Ngadi, M. (2007). Physico-chemical, rheological, calorimetric and dielectric behavior of selected Indian honey. Journal of Food Engineering, 79(4), 1207–1213.
 
2.
Al-Mamary, M., Al-Meeri, A., Al-Habori, M. (2002). Antioxidant activities and total phenolics of different types of honey. Nutrition Research, 22(9), 1041–1047.
 
3.
Al, M.L., Daniel, D., Moise, A., Bobis, O., Laslo, L., Bogdanov, S. (2009). Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chemistry, 112(4), 863–867.
 
4.
Alvarez-Suarez, J.M., González- Paramás, A.M., Santos-Buelga, C., Battino, M. (2010). Antioxidant characterization of native monofloral Cuban honeys. Journal of Agricultural and Food Chemistry, 58(17), 9817–9824.
 
5.
Alves, A., Ramos, A., Gonçalves, M.M., Bernardo, M., Mendes, B. (2013). Antioxidant activity, quality parameters and mineral content of Portuguese monofloral honeys. Journal of Food Composition and Analysis, 30(2), 130–138.
 
6.
Anjos, O., Iglesias, C., Peres, F., Martínez, J., García, Á., Taboada, J. (2015). Neural networks applied to discriminate botanical origin of honeys. Food Chemistry, 175, 128–136.
 
7.
AOAC (1995). Official Methods of Analysis. Washington, DC: Association of Official Analytical Chemists.
 
8.
AOAC (1996). Official Methods of Analysis (16th ed.). Washington, DC: Association of Official Analytical Chemists. Method: 962.19 vol. II.
 
9.
Baltrušaitytė, V., Venskutonis, P.R., Čeksterytė, V. (2007). Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chemistry, 101(2), 502–514.
 
10.
Benedetti, S., Mannino, S., Sabatini, A.G., Marcazzan, G.L. (2004). Electronic nose and neural network use for the classification of honey. Apidologie, 35(4), 397–402.
 
11.
Bentabol Manzanares, A., García, Z.H., Galdón, B.R., Rodríguez, E.R., Romero, C.D. (2011). Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chemistry, 126(2), 664–672.
 
12.
Beretta, G., Granata, P., Ferrero, M., Orioli, M., Maffei Facino, R. (2005). Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Analytica Chimica Acta, 533(2), 185–191.
 
13.
Berrueta, L.A., Alonso-Salces, R.M., Héberger, K. (2007). Supervised pattern recognition in food analysis. Journal of Chromatography A, 1158(1-2), 196–214.
 
14.
Bertelli, D., Lolli, M., Papotti, G., Bortolotti, L., Serra, G., Plessi, M. (2010). Detection of honey adulteration by sugar syrups using one-dimensional and two-dimensional High-Resolution Nuclear Magnetic Resonance. Journal of Agricultural and Food Chemistry, 58(15), 8495–8501.
 
15.
Bertoncelj, J., Doberšek, U., Jamnik, M., Golob, T. (2007). Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chemistry, 105(2), 822–828.
 
16.
Bogdanov, S., Ruoff, K., Persano Oddo, L. (2004). Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie, 35, Suppl. 1, 4-17.
 
17.
Bogdanov, S., Jurendic, T., Sieber, R., Gallmann, P. (2008). Honey for nutrition and health: A Review. Journal of the American College of Nutrition, 27(6), 677–689.
 
18.
Brudzynski, K., Miotto, D. (2011a). Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chemistry, 127(3), 1023–1030.
 
19.
Brudzynski, K., Miotto, D. (2011b). The recognition of high molecular weight melanoidins as the main components responsible for radical-scavenging capacity of unheated and heat-treated Canadian honeys. Food Chemistry, 125(2), 570–575.
 
20.
Chudzinska, M., Baralkiewicz, D. (2010). Estimation of honey authenticity by multielements characteristics using inductively coupled plasma-mass spectrometry (ICP-MS) combined with chemometrics. Food and Chemical Toxicology, 48(1), 284–290.
 
21.
Cordella, C., Antinelli, J.-F., Aurieres, C., Faucon, J.-P., Cabrol-Bass, D., Sbirrazzuoli, N. (2002). Use of differential scanning calorimetry (DSC) as a new technique for detection of adulteration in honeys. 1. Study of adulteration effect on honey thermal behavior. Journal of Agricultural and Food Chemistry, 50(1), 203–208.
 
22.
Council Directive 2001/110/EC of 20 December 2001 relating to honey. Official Journal of the European Communities, L 10, 12.1.2002, 47.
 
23.
de la Fuente, E., Ruiz-Matute, A.I., Valencia-Barrera, R.M., Sanz, J., Martínez Castro, I. (2011). Carbohydrate composition of Spanish unifloral honeys. Food Chemistry, 129(4), 1483–1489.
 
24.
Dżugan, M., Tomczyk, M., Sowa, P., Grabel-Lejko, D. (2018). Anioxidant activity as biomarker of honey variety. Molecules, 23(8), art. no. 2069.
 
25.
Estevinho, L., Pereira, A.P., Moreira, L., Dias, L.G., Pereira, E. (2008). Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food and Chemical Toxicology, 46(12), 3774–3779.
 
26.
Gheldof, N., Wang, X.-H., Engeseth, N.J. (2002). Identification and quantification of antioxidant components of honeys from various floral sources. Journal of Agricultural and Food Chemistry, 50(21), 5870–5877.
 
27.
Gonzalez-Miret, M.L., Terrab, A., Hernanz, D., Fernández-Recamales, M.Á., Heredia, F.J. (2005). Multivariate correlation between color and mineral composition of honeys and by their botanical origin. Journal of Agricultural and Food Chemistry, 53(7), 2574–2580.
 
28.
Habib, H.M., Al Meqbali, F.T., Kamal, H., Souka, U.D., Ibrahim, W.H. (2014). Physicochemical and biochemical properties of honeys from arid regions. Food Chemistry, 153, 35–43.
 
29.
Juszczak, L., Socha, R., Rożnowski, J., Fortuna, T., Nalepka, K. (2009). Physicochemical properties and quality parameters of herbhoneys. Food Chemistry, 113(2), 538–542.
 
30.
Krpan, M., Marković, K., Šarić, G., Skoko, B., Hruškar, M., Vahčić, N. (2009). Antioxidant activities and total phenolics of acacia honey. Czech Journal of Food Science, 27, SI, S245-S247.
 
31.
Lazaridou, A., Biliaderis, C.G., Bacandritsos, N., Sabatini, A.G. (2004). Composition, thermal and rheological behaviour of selected Greek honeys. Journal of Food Engineering, 64(1), 9–21.
 
32.
Madejczyk, M., Baralkiewicz, D. (2008). Characterization of Polish rape and honeydew honey according to their mineral contents using ICP-MS and F-AAS/AES. Analytica Chimica Acta, 617(1–2), 11–17.
 
33.
Meda, A., Lamien, C.E., Romito, M., Millogo, J., Nacoulma, O.G. (2005). Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3), 571–577.
 
34.
Mellen, M., Fikselová, M., Mendelová, A., Haščik, P. (2015). Antioxidant effect of natural honeys affected by their source and origin. Polish Journal of Food and Nutrition Sciences, 65(2), 81-85.
 
35.
Młodzińska, E. (2009). Survey of plant pigments: molecular and environmental determinants of plant colors. Acta Biologica Cracoviensia, Series Botanica, 51(1), 7-16.
 
36.
Muzolf-Panek, M., Waskiewicz, A., Kowalski, R., Konieczny, P. (2016). The effect of blueberries on the oxidative stability of pork meatloaf during chilled storage. Journal of Food Processing and Preservation, 40(5), 899–909.
 
37.
Nayik, G.A., Nanda, V. (2016). A chemometric approach to evaluate the phenolic compounds, antioxidant activity and mineral content of different unifloral honey types from Kashmir, India. LWT - Food Science and Technology, 74, 504–513.
 
38.
Nayik, G.A., Suhag, Y., Majid, I., Nanda, V. (2016). Discrimination of high altitude Indian honey by chemometric approach according to their antioxidant properties and macro minerals. Journal of the Saudi Society of Agricultural Sciences, 17(2), 200-2007.
 
39.
Pasini, F., Gardini, S., Marcazzan, G.L., Caboni, M.F. (2013). Buckwheat honeys: screening of composition and properties. Food Chemistry, 141(3), 2802-2811.
 
40.
Polish Standard PN-88/A-77626 (1998). Honeybee honey. Dziennik Norm i Miar nr 8, Wydawnictwo Normalizacyjne Alfa (in Polish).
 
41.
Popek, S., Halagarda, M., Kursa, K. (2017). A new model to identify botanical origin of Polish honeys based on the physicochemical parameters and chemometric analysis. LWT - Food Science and Technology, 77, 482–487.
 
42.
Sánchez-Moreno, C., Larrauri, J.A., Saura-Calixto, F. (1998). A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture, 270(2), 270–276.
 
43.
Sanz, M.L., Gonzalez, M., de Lorenzo, C., Sanz, J., Martı́nez-Castro, I. (2005). A contribution to the differentiation between nectar honey and honeydew honey. Food Chemistry, 91(2), 313–317.
 
44.
Siddiqui, A.J., Musharraf, S.G., Choudhary, M.I., Rahman, A. (2017). Application of analytical methods in authentication and adulteration of honey. Food Chemistry, 217, 687–698.
 
45.
Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144 LP-158.
 
46.
Tomaszewska-Gras, J., Bakier, S., Goderska, K., Mansfeld, K. (2015). Differential scanning calorimetry for determining the thermodynamic properties of selected honeys. Journal of Apicultural Science, 59(1), 109–118.
 
47.
Tonon, R.V., Baroni, A.F., Brabet, C., Gibert, O., Pallet, D., Hubinger, M.D. (2009). Water sorption and glass transition temperature of spray dried açai (Euterpe oleracea Mart.) juice. Journal of Food Engineering, 94(3-4), 215–221.
 
48.
Tuberoso, C.I. G., Jerković, I., Sarais, G., Congiu, F., Marijanović, Z., Kuś, P.M. (2014). Color evaluation of seventeen European unifloral honey types by means of spectrophotometrically determined CIE L*CabHab° chromaticity coordinates. Food Chemistry, 145, 284–291.
 
 
CITATIONS (23):
1.
The Use of Fluorescence Spectrometry to Determine the Botanical Origin of Filtered Honeys
Aleksandra Wilczyńska, Natalia Żak
Molecules
 
2.
Development and validation of a new method for the simultaneous determination of spinetoram J and L in honey from different botanical origins employing solid-phase extraction with a polymeric sorbent and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry
Paola Ruiz, Ana Ares, Silvia Valverde, María Martín, José Bernal
Food Research International
 
3.
An attempt to classify the botanical origin of honey using visible spectroscopy
Zofia Lorenc, Sławomir Paśko, Anna Pakuła, Dariusz Teper, Leszek Sałbut
Journal of the Science of Food and Agriculture
 
4.
Relationships between the Content of Phenolic Compounds and the Antioxidant Activity of Polish Honey Varieties as a Tool for Botanical Discrimination
Monika Kędzierska-Matysek, Małgorzata Stryjecka, Anna Teter, Piotr Skałecki, Piotr Domaradzki, Mariusz Florek
Molecules
 
5.
The Comparison of Physicochemical Parameters, Antioxidant Activity and Proteins for the Raw Local Polish Honeys and Imported Honey Blends
Michał Miłek, Aleksandra Bocian, Ewelina Kleczyńska, Patrycja Sowa, Małgorzata Dżugan
Molecules
 
6.
Quality evaluation of polish honey: On‐line survey, sensory study, and consumer acceptance
Małgorzata Starowicz, Grzegorz Lamparski, Anita Ostaszyk, Beata Szmatowicz
Journal of Sensory Studies
 
7.
The Influence of Chemical Contaminants on the Physicochemical Properties of Unifloral and Multifloral Honey from the North-East Region of Romania
Laura Scripcă, Sonia Amariei
Foods
 
8.
Selected Instrumental Techniques Applied in Food and Feed: Quality, Safety and Adulteration Analysis
Graciela Artavia, Carolina Cortés-Herrera, Fabio Granados-Chinchilla
Foods
 
9.
Assessment of the Botanical Origin of Polish Honeys Based on Physicochemical Properties and Bioactive Components with Chemometric Analysis
Maria Tarapatskyy, Patrycja Sowa, Grzegorz Zaguła, Małgorzata Dżugan, Czesław Puchalski
Molecules
 
10.
A New Approach for Determination of the Botanical Origin of Monofloral Bee Honey, Combining Mineral Content, Physicochemical Parameters, and Self-Organizing Maps
Tsvetomil Voyslavov, Elisaveta Mladenova, Ralitsa Balkanska
Molecules
 
11.
The Use of HPTLC and SDS-PAGE Methods for Coniferous Honeydew Honey Fingerprinting Compiled with Mineral Content and Antioxidant Activity
Monika Tomczyk, Aleksandra Bocian, Ewelina Sidor, Michał Miłek, Grzegorz Zaguła, Małgorzata Dżugan
Molecules
 
12.
Application of Stable Isotopic and Elemental Composition Combined with Random Forest Algorithm for the Botanical Classification of Chinese Honey
Zhaolong Liu, Tianyang Xu, Jinhui Zhou, Lanzhen Chen
Journal of Food Composition and Analysis
 
13.
Antiviral and Antibacterial Effect of Honey Enriched with Rubus spp. as a Functional Food with Enhanced Antioxidant Properties
Dorota Grabek-Lejko, Michał Miłek, Ewelina Sidor, Czesław Puchalski, Małgorzata Dżugan
Molecules
 
14.
Barevnost a obsah některých biologicky aktivních látek v medu
Jan Šubert, Jozef Kolář, Jozef Čižmárik
Česká a slovenská farmacie
 
15.
Determination of acaricides in honeys from different botanical origins by gas chromatography-mass spectrometry
Adrián Fuente-Ballesteros, Patricia Brugnerotto, Ana Costa, María Nozal, Ana Ares, José Bernal
Food Chemistry
 
16.
Phenolic compound, organic acid, mineral, and carbohydrate profiles of pine and blossom honeys
Duygu Çobanoğlu, İsmail Akyıldız, Temizer Kızılpınar, Emel Damarlı, Şenol Çelik
European Food Research and Technology
 
17.
Unexpected Value of Honey Color for Prediction of a Non-Enzymatic H2O2 Production and Honey Antibacterial Activity: A Perspective
Katrina Brudzynski
Metabolites
 
18.
The Application of SDS-PAGE Protein and HPTLC Amino Acid Profiling for Verification of Declared Variety and Geographical Origin of Honey
Małgorzata Dżugan, Michał Miłek, Ewelina Sidor, Justyna Buczkowicz, Joanna Hęclik, Aleksandra Bocian
Food Analytical Methods
 
19.
Application of Sorbent-Based Extraction Techniques in Food Analysis
Natalia Drabińska, Monika Marcinkowska, Martyna Wieczorek, Henryk Jeleń
Molecules
 
20.
Coniferous Honeydew Honey: Antibacterial Activity and Anti-Migration Properties against Breast Cancer Cell Line (MCF-7)
Małgorzata Dżugan, Ewa Ciszkowicz, Monika Tomczyk, Michał Miłek, Katarzyna Lecka-Szlachta
Applied Sciences
 
21.
The Effects of Bee Additives on the Physico-Chemical and Antioxidant Properties of Rapeseed Honey
Dorota Derewiaka, Ewa Majewska, Paulina Pruszkowska
Applied Sciences
 
22.
Honey differentiation with FTIR-ATR spectroscopy – Comparison with physicochemical parameters of a Polish honey sample set
Michał Halagarda, Mieczysław Zaczyk, Stanisław Popek, Vasilisa Pedan, Rafał Kurczab, Sascha Rohn
Journal of Food Composition and Analysis
 
23.
Relationships Linking the Colour and Elemental Concentrations of Blossom Honeys with Their Antioxidant Activity: A Chemometric Approach
Monika Kędzierska-Matysek, Anna Teter, Małgorzata Stryjecka, Piotr Skałecki, Piotr Domaradzki, Michał Rudaś, Mariusz Florek
Agriculture
 
eISSN:2083-6007
ISSN:1230-0322
Journals System - logo
Scroll to top