Search for Author, Title, Keyword
Characterization of Triterpene Saponin Composition of White, Yellow and Red Beetroot (Beta vulgaris L.)
More details
Hide details
Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska Str. 24, 31-155 Kraków, Poland
Department of Natural Products Chemistry, Medical University of Lublin, Chodźki Str. 1, 20-093 Lublin, Poland
Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Medical University of Lublin, Chodźki Str. 1, 20-093 Lublin, Poland
Aneta Spórna-Kucab   

Department of Chemical Technology and Environmental Analysis,, Cracow University of Technology, Warszawska 24, 31-155, Kraków, Poland
Submission date: 2022-01-31
Final revision date: 2022-04-26
Acceptance date: 2022-04-28
Online publication date: 2022-06-06
Publication date: 2022-06-06
Pol. J. Food Nutr. Sci. 2022;72(2):159–170
Beta vulgaris L. is an important source of bioactive saponins – a group of secondary metabolites – that have spurred a growing interest due to their health-promoting properties. This study aimed to gain information on triterpene saponin profile of the peel and flesh of white, yellow and red beet of six cultivars – Snow Ball, Boldor, Ceryl, Chrobry, Forono and Tytus – harvested in Poland, in the same region. Twenty four saponins with oleanolic acid, hederagenin, akebonoic acid and gypsogenin as aglycons were identified and quantified by liquid chromatography/tandem mass spectrometry (LC-ESI-MS/MS). Among them, betavulgaroside I, II, III and IV were the major compounds, but the quantitative profile of saponins was found to be dependent on beet cultivar and root part, respectively. The highest content of saponins was found in the peel of yellow B. vulgaris Boldor (20812 mg/kg fresh weight, fw), while the lowest saponin content was determined in the flesh of white B. vulgaris Snow Ball (497 mg/kg fw). In addition, the total saponin content in peel and flesh in yellow beet (26054 mg/kg fw) was much higher than the total content in peel and flesh in red beet Tytus (8364 mg/kg fw) and white beet Snow Ball (1204 mg/kg fw). This is the first report on the profile of saponins in white and yellow beets.
This research was financed by the Polish National Science Centre for years 2019-2020; Project No. 2019/03/X/ST4/00968).
The authors declare no conflicts of interest.
Bárta, J., Bártová, V., Šindelková, T., Jarošová, M., Linhartová, Z., Mráz, J., Bedrníček, J., Smetana, P., Samková, E., Laknerová, I. (2020). Effect of boiling on colour, contents of betalains and total phenolics and on antioxidant activity of colourful powder derived from six different beetroot (Beta vulgaris L.). Polish Journal of Food and Nutrition Sciences, 70(4), 377–385.
Chhikara, N., Kushwaha, K., Sharma, P., Gat, Y., Panghal, A. (2019). Bioactive compounds of beetroot and utilization in food processing industry: a critical review. Food Chemistry, 272, 192–200.
Clifford, T., Howatson, G., West, D.J., Stevenson, E.J. (2015). The potential benefits of red beetroot supplementation in health and disease. Nutrients, 7(4), 2801–2822.
De Tommasi, N., Conti, C., Stein, M.L., Pizza, C. (1991). Structure and in vitro antiviral activity of triterpenoid saponins from Calendula arvensis. Planta Medica, 57(3), 250–253.
Dirir, A.M., Daou, M., Yousef, A.F., Yousef, L.F. (2021). A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochemistry Reviews, 2021, 1–31.
dos Santos Baião, D., da Silva, D.V.T., Paschoalin, V.M.F. (2021). A narrative review on dietary strategies to provide nitric oxide as a non-drug cardiovascular disease therapy: beetroot formulations - A smart nutritional interaction. Foods, 10(4), art. no. 859.
Dubois, M.-A., Benze, S., Wagner, H. (1990). New biologically active triterpene-saponins from Randia dumetorum. Planta Medica, 56(5), 451–455.
Edelmann, M., Dawid, C., Ralla, T., Stark, T. D., Salminen, H., Weiss, J., Hofmann, T. (2020). Fast and sensitive LC-MS/MS method for the quantitation of saponins in various sugar beet materials. Journal of Agricultural and Food Chemistry, 68(50), 15027–15035.
El Hazzam, K., Hafsa, J., Sobeh, M., Mhada, M., Taourirte, M., El Kacimi, K., Yasri, A. (2020). An insight into saponins from Quinoa (Chenopodium quinoa Willd): a review. Molecules, 25(5), art. no. 1059.
Fang, Z., Li, J., Yang, R., Fang, L., Zhang, Y. (2020). A review: the triterpenoid saponins and biological activities of Lonicera Linn. Molecules, 25(17), art. no. 3773.
Francis, G., Kerem, Z., Makkar, H.P.S., Becker, K. (2002). The biological action of saponins in animal systems: a review. British Journal of Nutrition, 88(6), 587–605.
Güçlü-Üstündağ, Ö., Mazza, G. (2007). Saponins: properties, applications and processing. Critical Reviews in Food Science and Nutrition, 47(3), 231–258.
Hikino, H., Kiso, Y., Kinouchi, J., Sanada, S., Shoji, J. (1985). Antihepatotoxic actions of ginsenosides from Panax ginseng roots. Planta Medica, 51(1), 62–64.
Ida, Y., Satoh, Y., Katoh, M., Katsumata (nee Ohtsuka), M., Nagasao, M., Yamaguchi, K., Kamei, H., Shoji, J. (1994). Achyranthosides A and B, novel cytotoxic saponins from Achyranthes fauriei root. Tetrahedron Letters, 35(37), 6887–6890.
Ismaili, H., Tortora, S., Sosa, S., Fkih-Tetouani, S., Ilidrissi, A., Della Loggia, R., Tubaro, A., Aquino, R. (2001). Topical anti-inflammatory activity of Thymus willdenowii. Journal of Pharmacy and Pharmacology, 53(12), 1645–1652.
Kavalcová, P., Bystrická, J., Tomáš, J., Karovičová, J., Kovarovič, J., Lenková, M. (2015). The content of total polyphenols and antioxidant activity in red beetroot. Potravinárstvo - Slovak Journal of Food Sciences, 9(1), 77-83.
Kokanova-Nedialkova, Z., Nedialkov, P., Kondeva-Burdina, M. (2020). Ultra-high-performance liquid chromatography – high-resolution mass spectrometry profiling and hepatoprotective activity of purified saponin and flavonoid fractions from the aerial parts of wild spinach (Chenopodium bonus-henricus L.). Zeitschrift Für Naturforschung C, 76(7–8), 261–271.
Konishi, M., Hano, Y., Takayama, M., Nomura, T., Hamzah, A.S., Ahmad, R.B., Jasmani, H. (1998). Triterpenoid saponins from Hedyotis nudicaulis. Phytochemistry, 48(3), 525–528.
Kuljanabhagavad, T., Wink, M. (2009). Biological activities and chemistry of saponins from Chenopodium quinoa Willd. Phytochemistry Reviews, 8(2), 473–490.
Kuroda, M., Mimaki, Y., Sashida, Y., Kitahara, M., Yamazaki, M., Yui, S. (2001). Securiosides A and B, novel acylated triterpene bisdesmosides with selective cytotoxic activity against M-CSF-stimulated macrophages. Bioorganic & Medicinal Chemistry Letters, 11(3), 371–374.
Kuwada, K., Kawase, S., Nakata, K., Shinya, N., Narukawa, Y., Fuchino, H., Kawahara, N., Kiuchi, F. (2020). LC–MS analysis of saponins of Achyranthes root in the Japanese market. Journal of Natural Medicines, 74(1), 135–141.
Lemmich, E., Cornett, C., Furu, P., Jørstian, C.L., Knudsen, A.D., Olsen, C.E., Salih, A., Thiilborg, S.T. (1995). Molluscicidal saponins from Catunaregam nilotica. Phytochemistry, 39(1), 63–68.
Lidder, S., Webb, A. (2013). Vascular effects of dietary nitrate (as found in green leafy vegetables and beetroot) via the nitrate‐nitrite‐nitric oxide pathway. British Journal of Clinical Pharmacology, 75(3SI), 677–696.
Mbaveng, A.T., Ndontsa, B.L., Kuete, V., Nguekeu, Y.M.M., Çelik, İ., Mbouangouere, R., Tane, P., Efferth, T. (2018). A naturally occuring triterpene saponin ardisiacrispin B displayed cytotoxic effects in multi-factorial drug resistant cancer cells via ferroptotic and apoptotic cell. Phytomedicine, 43, 78–85.
Mikołajczyk-Bator, K., Błaszczyk, A., Czyżniejewski, M., Kachlicki, P. (2016). Characterisation and identification of triterpene saponins in the roots of red beets (Beta vulgaris L.) using two HPLC–MS systems. Food Chemistry, 192, 979–990.
Mroczek, A., Kapusta, I., Janda, B., Janiszowska, W. (2012). Triterpene saponin content in the roots of red beet (Beta vulgaris L.) cultivars. Journal of Agricultural and Food Chemistry, 60(50), 12397–12402.
Mroczek, A., Kapusta, I., Stochmal, A., Janiszowska, W. (2019). MS/MS and UPLC-MS profiling of triterpenoid saponins from leaves and roots of four red beet (Beta vulgaris L.) cultivars. Phytochemistry Letters, 30, 333–337.
Mroczek, A., Klimczak, U., Kowalczyk, M. (2021). Determination of saponins in leaves of four swiss chard (Beta vulgaris L.) cultivars by UHPLC-CAD/QTOF-MS/MS. Polish Journal of Food and Nutrition Sciences, 71(2), 147–159.
Muhammad, M.T., Khan, M.N. (2018). Eco-friendly, biodegradable natural surfactant (Acacia Concinna): an alternative to the synthetic surfactants. Journal of Cleaner Production, 188, 678–685.
Parus, A. (2013). Właściwości farmakologiczne saponin. Postępy Fitoterapii, 3, 200–204 (in Polish).
Pietrzkowski, Z., Nemzer, B., Spórna, A., Stalica, P., Tresher, W., Keller, R., Jimenez, R., Michałowski, T., Wybraniec, S. (2010). Influence of betalain-rich extract on reduction of discomfort associated with osteoarthritis. New Medicine, 1, 12–17.
Rai, S., Acharya-Siwakoti, E., Kafle, A., Devkota, H. P., Bhattarai, A. (2021). Plant-derived saponins: a review of their surfactant properties and applications. Sci, 3(4), art. no. 44.
Schmitt, C., Grassl, B., Lespes, G., Desbrières, J., Pellerin, V., Reynaud, S., Gigault, J., Hackley, V.A. (2014). Saponins: A renewable and biodegradable surfactant from its microwave-assisted extraction to the synthesis of monodisperse lattices. Biomacromolecules, 15(3), 856–862.
Sparg, S.G., Light, M.E., Van Staden, J. (2004). Biological activities and distribution of plant saponins. Journal of Ethnopharmacology, 94(2–3), 219–243.
Spórna-Kucab, A., Kumorkiewicz, A., Szmyr, N., Szneler, E., Wybraniec, S. (2019). Separation of betacyanins from flowers of Amaranthus cruentus L. in a polar solvent system by high-speed counter-current chromatography. Journal of Separation Science, 42(9), 1676–1685.
Spórna-Kucab, A., Wróbel, N., Kumorkiewicz-Jamro, A., Wybraniec, S. (2020). Separation of betacyanins from Iresine herbstii Hook. ex Lindl. leaves by high-speed countercurrent chromatography in a polar solvent system. Journal of Chromatography A, 1626, art. no. 461370.
Spórna-Kucab, A., Wybraniec, S. (2020). High-speed counter-current chromatography in separation and identification of saponins from Beta vulgaris L. cultivar Red Sphere. Polish Journal of Food and Nutrition Sciences, 70(1), 67–74.
Wybraniec, S., Stalica, P., Spórna, A., Mizrahi, Y. (2010). Profiles of betacyanins in epidermal layers of grafted and light-stressed cacti studied by LC-DAD-ESI-MS/MS. Journal of Agricultural and Food Chemistry, 58(9), 5347–5354.
Wybraniec, S., Stalica, P., Spórna, A., Nemzer, B., Pietrzkowski, Z., Michałowski, T. (2011). Antioxidant activity of betanidin: electrochemical study in aqueous media. Journal of Agricultural and Food Chemistry, 59(22), 12163–12170.
Xu, J., Wang, S., Feng, T., Chen, Y., Yang, G. (2018). Hypoglycemic and hypolipidemic effects of total saponins from Stauntonia chinensis in diabetic db/db mice. Journal of Cellular and Molecular Medicine, 22(12), 6026–6038.
Yoshikawa, M., Matsuda, H., Harada, E., Murakami, T., Wariishi, N., Yamahara, J., Murakami, N. (1994). Elatoside E, a new hypoglycemic principle from the root cortex of Aralia elata Seem.: Structure-related hypoglycemic activity of oleanolic acid glycosides. Chemical and Pharmaceutical Bulletin, 42(6), 1354–1356.
Yoshikawa, M., Murakami, T., Kadoya, M., Matsuda, H., Muraoka, O., Yamahara, J., Murakami, N. (1996). Medicinal Foodstuffs. III. Sugar Beet. (1) : Hypoglycemic oleanolic acid oligoglycosides, betavulgarosides, I, II, III, and IV, from the root of Beta vulgaris L. (Chenopodiaceae). Chemical and Pharmaceutical Bulletin, 44(6), 1212–1217.
Yoshikawa, M., Murakami, T., Kadoya, M., Yamahara, J., Matsuda, H. (1998). Medicinal foodstuffs. XV. Sugar beet. (2): Structures of betavulgarosides V, VI, VII, VIII, IX, and X from the roots and leaves of sugar beet (Beta vulgaris L., Chenopodiaceae). Chemical and Pharmaceutical Bulletin, 46(11), 1758–1763.