Search for Author, Title, Keyword
Techno-Functional and Bioactive Properties and Chemical Composition of Guava, Mamey Sapote, and Passion Fruit Peels
More details
Hide details
CONAHCYT-CIAD, Centro de Investigación en Alimentación y Desarrollo, A.C. Carr. Gustavo Enrique Astiazarán Rosas 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, Sonora 83304, Mexico
Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N, Juriquilla, Querétaro 76230, Mexico
Submission date: 2023-02-10
Acceptance date: 2023-10-04
Online publication date: 2023-11-02
Publication date: 2023-11-02
Corresponding author
Leticia X. López-Martínez   

CONAHCYT-CIAD, Coordinación de Tecnologia de Alimentos de Origen Vegetal, Mexico
Pol. J. Food Nutr. Sci. 2023;73(4):311-321
Due to their nutritional and sensorial characteristics, tropical fruits like guava, mamey sapote, and passion fruit are regularly incorporated into daily diets. Their by-products, especially peels, are approximately 10 to 35% of their weight and possess an important content of bioactive compounds, such as dietary fiber and phenolics. The nutritional, technological, physio-functional properties and phenolic compound compositions of guava, mamey sapote, and passion fruit peels were studied. Peels had promising techno- and physio-functional characteristics, good dietary fiber contents (45.18-61.42 g/100 g), and phenolic profiles with ferulic acid, gallic acid, p-coumaric, and catechin as the main compounds. Peel powders also showed excellent DPPH radical scavenging activity (125.3–252.4 µmol TE/100 g) and Trolox equivalent antioxidant capacity, TEAC (369.2–656.8 µmol TE/100 g). The α-amylase and lipase inhibitory activity varied from 28.15 to 51.4% and 30.89 to 57.15%, respectively. Higher values of α-glucosidase inhibition capacity were found, ranging from 51.64 to 70.32%. The chemical composition and properties reported in the present work suggest that peel powders of these guava, mamey sapote, and passion fruit could be used as constituents in different foods, such as bakery and meat goods, with beneficial health effects like control of hyperglycemia, improved intestinal function, and control of overweight; however, more studies are necessary for animal models and humans to confirm these bioactivities conclusively.
This investigation is part of the aims of project 997, "Phenols and fiber from tropical fruits. Interactions and bioavailability in in vitro digestions" of the "Investigadoras e Investigadores por México del CONAHCYT".
The authors declare no conflict of interest.
Agada, R., Usman, W.A., Shehu, S., Thagariki, D. (2020). In vitro and in vivo inhibitory effects of Carica papaya seed on α-amylase and α-glucosidase enzymes. Heliyon, 6(3), art. no. e03618.
Alia-Tejacal, I., Colinas-León, M.T., Soto-Hernández, R.M. (2005). Daños por frío en zapote mamey (Pouteria sapota (Jacq.) HE Moore and stearn). II. Cambios en fenoles totales y actividad enzimática. Revista Fitotecnia Mexicana, 28(1), art. no 25 (in Spanish).
Asp, N.G., Johansson, C.G., Hallmer, H., Siljestroem, M. (1983). Rapid enzymic assay of insoluble and soluble dietary fiber. Journal of Agricultural and Food Chemistry, 31(3), 476-482.
Azizan, A., Lee, A.X., Abdul Hamid, N.A., Maulidiani, M., Mediani, A., Abdul Ghafar, S.Z., Zulaikha Khaleeda, N.K., Abas, F. (2020). Potentially bioactive metabolites from pineapple waste extracts and their antioxidant and α-glucosidase inhibitory activities by 1H NMR. Foods, 9(2), art. no. 173.
Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology, 28(1), 25-30.
Can-Cauich, C.A., Sauri-Duch, E., Betancur-Ancona, D., Chel-Guerrero, L., González-Aguilar, G.A., Cuevas-Glory, L.F., Pérez-Pacheco, E., Moo-Huchin, V.M. (2017). Tropical fruit peel powders as functional ingredients: Evaluation of their bioactive compounds and antioxidant activity. Journal of Functional Foods, 37, 501-506.
Cao, Q., Teng, J., Wei, B., Huang, L., Xia, N. (2021). Phenolic compounds, bioactivity, and bioaccessibility of ethanol extracts from passion fruit peel based on simulated gastrointestinal digestion. Food Chemistry, 356, art. no. 129682.
Casarotti, S.N., Borgonovi, T.F., Batista, C.L., Penna, A.L.B. (2018). Guava, orange and passion fruit by-products: Characterization and its impacts on kinetics of acidification and properties of probiotic fermented products. LWT – Food Science and Technology, 98, 69-76.
Cuevas-Juárez, E., Yuriar-Arredondo, K.Y., Pío-León, J.F., Montes-Avila, J., López-Angulo, G., Díaz-Camacho, S.P., Delgado-Vargas, F. (2014). Antioxidant and α-glucosidase inhibitory properties of soluble melanins from the fruits of Vitex mollis Kunth, Randia echinocarpa Sessé et Mociño and Crescentia alata Kunth. Journal of Functional Foods, 9, 78-88.
Deng, L.Z., Yang, X.H., Mujumdar, A.S., Zhao, J.H., Wang, D., Zhang, Q., Wang, J., Gao, Z-J., Xiao, H.W. (2018). Red pepper (Capsicum annuum L.) drying: Effects of different drying methods on drying kinetics, physicochemical properties, antioxidant capacity, and microstructure. Drying Technology, 36(8), 893-907.
Dias, P.G.I., Sajiwanie, J.W.A., Rathnayaka, R.M.U.S.K. (2020). Chemical composition, physicochemical and technological properties of selected fruit peels as a potential food source. International Journal of Fruit Science, 20(sup2), S240-S251.
Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411-421.
Fu, C.C., Hung, T.C., Chen, J.Y., Su, C.H., Wu, W.T. (2010). Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresource Technology, 101(22), 8750-8754.
Gutiérrez-Grijalva, E.P., Antunes-Ricardo, M., Acosta-Estrada, B.A., Gutiérrez-Uribe, J.A., Heredia, J.B. (2019). Cellular antioxidant activity and in vitro inhibition of α-glucosidase, α-amylase and pancreatic lipase of oregano polyphenols under simulated gastrointestinal digestion. Food Research International, 116, 676-686.
Helrich, K. (1990). Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed. Washington, DC: Arlington, VA.
Jribi, S., Sahagùn, M., Debbabi, H., Gomez, M. (2019). Evolution of functional, thermal and pasting properties of sprouted whole durum wheat flour with sprouting time. International Journal of Food Science & Technology, 54(9), 2718-2724.
Kim, E.H., Lee, S.Y., Baek, D.Y., Park, S.Y., Lee, S.G., Ryu, T.H., Lee, S.K., Kang, H.J., Kwon, O.H, Kill, M., Oh, S.W. (2019). A comparison of the nutrient composition and statistical profile in red pepper fruits (Capsicums annuum L.) based on genetic and environmental factors. Applied Biological Chemistry, 62, art. no. 48.
Liu, C.W., Wang, Y.C., Lu, H.C., Chiang, W.D. (2014). Optimization of ultrasound-assisted extraction conditions for total phenols with anti-hyperglycemic activity from Psidium guajava leaves. Process Biochemistry, 49(10), 1601-1605.
Liu, X., Yan, X., Bi, J., Liu, J., Zhou, M., Wu, X., Chen, Q. (2018). Determination of phenolic compounds and antioxidant activities from peel, flesh, seed of guava (Psidium guajava L.). Electrophoresis, 39(13), 1654-1662.
López-Marcos, M.C., Bailina, C., Viuda-Martos, M., Pérez-Alvarez, J.A., Fernández-López, J. (2015). Properties of dietary fibers from agroindustrial coproducts as source for fiber-enriched foods. Food and Bioprocess Technology, 8(12), 2400-2408.
Luciano, L. (2018). Est-il encore raisonnable de donner des conseils diététiques à un constipé chronique?. Côlon & Rectum, 12(1), 14-16 (in French).
Luo, X., Wang, Q., Zheng, B., Lin, L., Chen, B., Zheng, Y., Xiao, J. (2017). Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food and Chemical Toxicology, 109, Part 2, 1003-1009.
Marquez-Molina, O., Domínguez-Avila, J.A., Lopez-Martínez, L.X., Pareek, S., Santana, T.J.M., Aguilar, G.A.G. (2023). Valorization of tropical fruit peel powders: Physicochemical composition, techno-functional properties, and in vitro antioxidant and antidiabetic activities. Emirates Journal of Food and Agriculture, 35(6), 577-587.
Martínez, R., Torres, P., Meneses, M.A., Figueroa, J.G., Pérez-Álvarez, J.A., Viuda-Martos, M. (2012). Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chemistry, 135(3), 1520-1526.
Mudgil, D., Barak, S. (2013). Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. International Journal of Biological Macromolecules, 61, 1-6.
Nelson, A.L. (2001). Chapter 1: Defining high-fiber ingredient terminology. In A.L. Nelson (Ed.) High-Fiber Ingredients, Cereals and Grains Association, pp. 1-27.
Niu, Y., Na, L., Feng, R., Gong, L., Zhao, Y., Li, Q., Li, Y., Sun, C. (2013). The phytochemical, EGCG, extends lifespan by reducing liver and kidney function damage and improving age‐associated inflammation and oxidative stress in healthy rats. Aging Cell, 12, 1041-1049.
Ou, S., Kwok, K.C., Li, Y., Fu, L. (2001). In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. Journal of Agricultural and Food Chemistry, 49(2), 1026-1029.
Qin, Y., Xiao, J., Wang, Y., Dong, Z., Woo, M.W., Chen, X.D. (2020). Mechanistic exploration of glycemic lowering by soluble dietary fiber ingestion: Predictive modeling and simulation. Chemical Engineering Science, 228, art. no. 115965.
Ray, S., Samanta, T., Mitra, A., De, B. (2014). Effect of extracts and components of black tea on the activity of β-glucuronidase, lipase, α-amylase, α-glucosidase: An in vitro study. Current Nutrition & Food Science, 10(3), 181-186.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237.
Rufino, M.S., Alves, R.E., Brito, E.S., Pérez-Jiménez, J., Saura-Calixto, F., Mancini-Filho, J. (2010) Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002.
Sagar, N.A., Pareek, S., Sharma, S., Yahia, E.M., Lobo, M.G. (2018). Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512-531.
Sánchez-Zapata, E., Fernández-López, J., Peñaranda, M., Fuentes-Zaragoza, E., Sendra, E., Sayas, E., Pérez-Alvarez, J.A. (2011). Technological properties of date paste obtained from date by-products and its effect on the quality of a cooked meat product. Food Research International, 44(7), 2401-2407.
Savran, A., Zengin, G., Aktumsek, A., Mocan, A., Glamoćlija, J., Ćirić, A., Soković, M. (2016). Phenolic compounds and biological effects of edible Rumex scutatus and Pseudosempervivum sempervivum: potential sources of natural agents with health benefits. Food & Function, 7(7), 3252-3262.
Selani, M.M., Bianchini, A., Ratnayake, W.S., Flores, R.A., Massarioli, A.P., de Alencar, S.M., Canniatti Brazaca, S.G. (2016). Physicochemical, functional and antioxidant properties of tropical fruits co-products. Plant Foods for Human Nutrition, 71, 137-144.
Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
Solís-Fuentes, J.A., Ayala-Tirado, R.C., Fernández-Suárez, A.D., Durán-de-Bazúa, M.C. (2015). Mamey sapote seed oil (Pouteria sapota). Potential, composition, fractionation and thermal behavior. Grasas y Aceites, 66(1), art. no. e056.
Suleria, H.A., Barrow, C.J., Dunshea, F.R. (2020). Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods, 9(9), art. no. 1206.
Tan, Y., Chang, S.K., Zhang, Y. (2017). Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chemistry, 214, 259-268.
Torres-Rodríguez, A., Salinas-Moreno, Y., Valle-Guadarrama, S., Alia-Tejacal, I. (2011). Soluble phenols and antioxidant activity in mamey sapote (Pouteria sapota) fruits in postharvest. Food Research International, 44(7), 1956-1961.
Velderrain-Rodríguez, G., Torres-Moreno, H., Villegas-Ochoa, M.A., Ayala-Zavala, J.F., Robles-Zepeda, R.E., Wall-Medrano, A., González-Aguilar, G.A. (2018). Gallic acid content and an antioxidant mechanism are responsible for the antiproliferative activity of ‘Ataulfo’ mango peel on LS180 cells. Molecules, 23(3), art. no. 695.
Worsztynowicz, P., Napierała, M., Białas, W., Grajek, W., Olkowicz, M. (2014). Pancreatic α-amylase and lipase inhibitory activity of polyphenolic compounds present in the extract of black chokeberry (Aronia melanocarpa L.). Process Biochemistry, 49(9), 1457-1463.
Worthington, V. (1993). Worthington Enzyme Manual. Worthington Biochemical Corporation, New Jersey, Freehold, pp. 36-41.
Wu, L., Zhang, M., Xin, X., Lai, F., Wu, H. (2010). Physicochemical and functional properties of a protein isolate from maca (Lepidium meyenii) and the secondary structure and immunomodulatory activity of its major protein component. Food & Function, 10(5), 2894-2905.
Xu, H., Jiao, Q., Yuan, F., Gao, Y. (2015). In vitro binding capacities and physicochemical properties of soluble fiber prepared by microfluidization pretreatment and cellulase hydrolysis of peach pomace. LWT – Food Science and Technology, 63(1), 677-684.
Yahia, E.M., Gutiérrez-Orozco, F., Arvizu-de Leon, C. (2011). Phytochemical and antioxidant characterization of mamey (Pouteria sapota Jacq. HE Moore & Stearn) fruit. Food Research International, 44(7), 2175-2181.
Zdunić, G., Aradski, A.A., Gođevac, D., Živković, J., Laušević, S.D., Milošević, D.K., Šavikin, K. (2020). In vitro hypoglycemic, antioxidant and antineurodegenerative activity of chokeberry (Aronia melanocarpa) leaves. Industrial Crops and Products, 148, art. no. 112328.
Zhang, S., Xu, X., Cao, X., Liu, T. (2023). The structural characteristics of dietary fibers from Tremella fuciformis and their hypolipidemic effects in mice. Food Science and Human Wellness, 12(2), 503-511.
Zheng, Y., Tian, J., Yang, W., Chen, S., Liu, D., Fang, H., Zhang, H., Ye, X. (2020). Inhibition mechanism of ferulic acid against α-amylase and α-glucosidase. Food Chemistry, 317, art. no. 126346.
Journals System - logo
Scroll to top