Search for Author, Title, Keyword
Chemical, Physical, and Sensory Properties of Bread with Popped Amaranth Flour
More details
Hide details
Departamento Académico de Ciencias y Tecnologías Agroindustriales, Facultad de Ingeniería, Universidad Nacional Micaela Bastidas de Apurímac, Av. Inca Garcilaso de la Vega s/n, Tamburco, Abancay, Apurímac, Perú
Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo E. Astiazarán Rosas # 46, Colonia La Victoria, CP 83304, Hermosillo, Sonora, México
Escuela de Ingeniería de Industrias Alimentarias, Facultad de Ingeniería y Arquitectura, Universidad Peruana Unión, Carretera Central km 19.5 Ñaña, Chosica, Lima, Perú
Departamento Académico de Ingeniería y Tecnología, Universidad Autónoma de Occidente, Boulevard Macario Gaxiola y Carretera Internacional CP 81223. Los Mochis, Sinaloa, México
Submission date: 2023-12-16
Acceptance date: 2024-04-22
Online publication date: 2024-05-14
Publication date: 2024-05-14
Corresponding author
Guadalupe Chaquilla-Quilca   

Departamento Académico de Ciencias y Tecnologías Agroindustriales, Facultad de Ingeniería, Universidad Nacional Micaela Bastidas de Apurímac, Av. Inca Garcilaso de la Vega s/n, Tamburco, 03001, Abancay, Apurímac, Peru
Pol. J. Food Nutr. Sci. 2024;74(2):137-146
This study investigated the effect of substitution of wheat flour with popped amaranth flour in bread formulation on the chemical, physical, and sensory characteristics of breads. The raw and popped amaranth grain flours of four Peruvian varieties: Oscar Blanco, Centenario, Taray, and Imperial, were characterised for chemical composition and pasting properties using Rapid Visco-Analyzer (RVA). Both types of amaranth flour had a high nutritional value, but the peak and final viscosity of popped amaranth flour were closer to the wheat flour. Breads were formulated with the popped amaranth flour, at four substitution levels of 0, 10, 20, and 30%. A significant increase in contents of protein (around 12%) and raw fiber (more than 100%), and a decrease in carbohydrate content (around 6%) in breads at the highest substitution level compared to wheat bread were observed. At this substitution level, the RVA profile parameters, specific volume, pore area, and colour coordinates (L*, a*, and b*) differed significantly. In the sensory analysis using Flash profile technique, consumers identified that the Taray and Imperial bread varieties at 10 and 20% substitution level were similar to the wheat bread. Adding popped amaranth flour to bread improved the nutritional value, ensuring good physical and sensory properties. Popped amaranth flour can, thus, be an alternative to wheat flour in the development of healthy bakery products.
The authors thank Instituto Nacional de Innovación Agraria (INIA) station Andenes Cusco-Perú for the amaranth samples Oscar Blanco, INIA 414 Taray, and INIA 430 Imperial. We also thank M. Carmen Granados N. from the CIAD Hermosillo cereal laboratory for technical support in rheology analysis and bread making.
The authors thank Vicerrectorado de investigación, Universidad Nacional Micaela Bastidas de Apurímac (UNAMBA) for funding the project from mining canon fees (Resolution 048-2019-CU-UNAMBA).
The authors declare that there is no conflict of interests.
AACC International. 1995. Approved Methods of the American Association of Cereal Chemists (9th Ed.). St. Paul, MN, USA.
AACC International. 2000. Approved Methods of American Association of Cereal Chemists (10th Ed.). St. Paul, MN, USA. Method 76-21.
AOAC International. 2005. Association of Official Analytical Chemists. Official Methods of the AOAC International (18th Ed.). Gaithersberg, MD, USA.
Alvarez-Jubete, L., Arent, E.K., Gallagher, E. (2009). Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. International Journal of Food Sciences and Nutrition, 60(S4), 240–257.
Alvarez-Jubete, L., Auty, M., Arendt, E.K., Gallagher, E. (2010). Baking properties and microstructure of pseudocereal flours in gluten-free bread formulations. European Food Research and Technology, 230, 437–445.
Amare, E., Mouquet-Rivier, C., Servent, A., Morel, G., Adish, A., Haki, G.D. (2015). Protein quality of amaranth grains cultivated in Ethiopia as affected by popping and fermentation. Food and Nutrition Sciences, 6(1), 38–48.
Amare, E., Mouquet-Rivier, C., Rochette, I., Adish, A., Haki, D.H. (2016). Effect of popping and fermentation on proximate composition, minerals and absorption inhibitors, and mineral bioavailability of Amaranthus caudatus grain cultivated in Ethiopia. Journal of Food Science and Technology, 53(7), 2987–2994.
Bodroza-Solarov, M., Filipcev, B., Kevresan, Z., Mandic, A., Simurina, O. (2008). Quality of bread supplemented with popped Amaranthus cruentus grain. Journal of Food Process Engineering, 31(5), 602–618.
Bressani, R., Gonzales, J.M., Zuñiga, J., Breuner, M., Elias, L.G. (1987). Yield, selected chemical composition and nutritive value of 14 selections of Amaranth grain representing four species. Journal of the Science of Food and Agriculture, 38(4), 347–356.
Calderón de la Barca, A.M., Rojas-Martínez, M.E., Islas-Rubio, A.R., Cabrera-Chávez, F. (2010). Gluten-free breads and cookies of raw and popped amaranth flours with attractive technological and nutritional qualities. Plant Foods for Human Nutrition, 65, 241–246.
Corke, H., Cai, Y.Z., Wu, H.X. (2016). Amaranth: Overview. In C. Wrigley, H. Corke, K. Seetharaman, J. Faubion, J. (Eds.). Encyclopedia of Food Grains. 2nd Edition, Volume 1, Academic Press, Oxford, UK, pp. 287–296.
Cotovanu, I., Mironeasa, S. (2021). Impact of different amaranth particle sizes addition level on wheat flour dough rheology and bread. Foods, 10(7), art no. 1539.
Coţovanu, I., Mironeasa, S. (2022). Features of bread made from different amaranth flour fractions partially substituting wheat flour. Applied Sciences, 12(2), art. no. 897.
Dairou, V., Sieffermann, J.M. (2002). A comparison of 14 jams characterised by conventional profile and a quick original method, the flash profile. Journal of Food Science, 67(2), 826–834.
Derkanosova, N.M., Stakhurlova, A.A., Pshenichnaya, I.A., Ponomareva, I.N., Peregonchaya, O.V., Sokolova, S.A. (2020). Amaranth as a bread enriching ingredient. Foods and Raw Materials, 8(2), 223–231.
Drzewiecki, J. (2001). Similarities and differences between Amaranthus species and cultivars and estimation of outcrossing rate on the basis of electrophoretic separations of urea-soluble seed proteins. Euphytica, 119(3), 279–287.
Duda, A., Jeżowski, P., Radzikowska, D., Kowalczewski, P.L. (2019). Partial wheat flour replacement with gluten-free flours in bread - quality, texture and antioxidant activity. Journal of Microbiology, Biotechnology and Food Sciences, 9(3), 505–509.
Guardianelli, L.M., Salinas, M.V., Puppo, M.C. (2021). Quality of wheat breads enriched with flour from germinated amaranth seeds. Food Science and Technology International, 28(5), 388–396.
Hama, F., Icard-Verniere, C., Guyot, J-P., Picq, C., Diawara, B., Mouquet- Rivier, C. (2011). Changes in micro- and macronutrient composition of pearl millet and white sorghum during in field versus laboratory decortication. Journal of Cereal Science, 54(3), :425–433.
He, H-P., Cai, Y., Sun, M., Corke, H. (2002). Extraction and purification of squalene from Amaranthus grain. Journal of Agricultural and Food Chemistry, 50(2), 368–372.
Iglesias-Puig, E., Monedero, V., Haros, M. (2015). Bread with whole quinoa flour and bifidobacterial phytases increases dietary mineral intake and bioavailability. LWT – Food Science and Technology, 60(1), 71–77.
Kamoto, R.J., Kasapila, W., Ng’ong’ola-Manani, T.A. (2018). Use of fungal alpha amylase and ascorbic acid in the optimization of grain amaranth–wheat flour blended bread. Food and Nutrition Research, 62(1341), art no. 1341.
Kaur, S., Singh, N., Rana, J.C. (2010). Amaranthus hypochondriacus and Amaranthus caudatus germplasm: Characteristics of plants, grain and flours. Food Chemistry, 123(4), 1227–1234.
Kong, X.L., Bao, J.S., Corke, H. (2009). Physical properties of Amaranthus starch. Food Chemistry, 113(2), 371–376.
Lai, H. (2001). Effects of hydrothermal treatment on the physicochemical properties of pregelatinized rice flour. Food Chemistry, 72(4), 455–463.
Martínez, C., Ribotta, P.D., Añón, M.C., León, A.E. (2013). Effect of amaranth flour (Amaranthus mantegazzianus) on the technological and sensory quality of bread wheat pasta. Food Science and Technology International, 20(2), 127–135.
Miranda-Ramos, K.C., Sanz-Ponce, N., Haros, C.M. (2019). Evaluation of technological and nutritional quality of bread enriched with amaranth flour. LWT – Food Science and Technology, 114, art. no. 108418.
Muyonga, J.H., Andabati, B., Ssepuuya, G. (2014). Effect of heat processing on selected grain amaranth physicochemical properties. Food Science and Nutrition, 2(1), 9–16.
Nasir S., Allai, F.M., Gani, M., Ganaie, S., Gul, K., Jabeen, A., Majeed, D. (2020). Physical, textural, rheological, and sensory characteristics of amaranth-based wheat flour bread. International Journal of Food Science, 2020, art. no. 8874872.
Oszvald, M., Tamás, C., Rakszegi, M., Tömösközi, S., Békés, F., Tamás, L. (2009). Effects of incorporated amaranth albumins on the functional properties of wheat dough. Journal of the Science of Food and Agriculture, 89(5), 882–889.
Palombini, S.V., Claus, T., Maruyama, S.A., Gohara, A.K., Souza, A.H.P., de Souza, N.E., Visentainer, J.V., Gomes, S.T.M., Matsushita, M. (2013). Evaluation of nutritional compounds in new amaranth and quinoa cultivars. Food Science and Technology Campinas, 33(2), 339–344.
Paucar-Menacho, L.M., Dueñas, M., Peñas, P., Frias, J., Martínez-Villaluenga, C. (2018). Effect of dry heat puffing on nutritional composition, fatty acid, amino acid and phenolic profiles of pseudocereals grains. Polish Journal of Food and Nutrition Sciences, 68(4), 289–297.
Pavlík, V. (2012). The revival of Amaranth as a third-millennium food. Neuroendocrinology Letters, 33(3), 3–7.
Piga, A., Conte, P., Fois, S., Catzeddu, P., Del Caro, A., Sanguinetti, A.M., Fadda, C. (2021). Technological, nutritional and sensory properties of an innovative gluten-free double-layered flat bread enriched with amaranth flour. Foods, 10(5), art. no. 920.
Repo-Carrasco-Valencia, R., Peña, J., Kallio, H., Salminen, S. (2009). Dietary fiber and other functional components in two varieties of crude and extruded kiwicha (Amaranthus caudatus). Journal of Cereal Science, 49(2), 219–224.
Rosell, C.M., Cortez, G., Repo-Carrasco, R. (2009). Breadmaking use of Andean crops quinoa, kañiwa, kiwicha, and tarwi. Cereal Chemistry, 86(4), 386–392.
Sanz-Penella, J.M., Wronkowska, M., Soral-Smietana, M., Haros, M. (2013). Effect of whole amaranth flour on bread properties and nutritive value. LWT – Food Science and Technology, 50(2), 679–685.
Sindhu, R., Khatkar, B.S. (2016). Characterization of amaranth (Amaranthus hypocondriacus) starch. International Journal of Engineering Research and Technology, 5(6), 463–469.
Šárka, E., Dvořáček, V. (2017). New processing and applications of waxy starch (a review). Journal of Food Engineering, 206, 77–87.
Shittu, T.A., Raji, A.O., Sanni, L.O. (2007). Bread from composite cassava-wheat flour: I. Effect of baking time and temperature on some physical properties of bread loaf. Food Research International, 40(2), 280–290.
Tömösközi, S., Gyenge, L., Pelcéder, A., Abonyi, T., Schönlechner R., Lásztity, R. (2011). Effects of flour and protein preparations from amaranth and quinoa seeds on the rheological properties of wheat-flour dough and bread crumb. Czech Journal of Food Sciences, 29(2), 109–116.
USDA. (2019). (U.S. Department of Agriculture) National Nutrient Database for Standard Reference.
Vásquez, F., Verdú, S., Islas, A.R., Barat, J.M., Grau, R. (2016). Effect of substitution of wheat flour with quinoa flour (Chenopodium quinoa) on dough rheological and textural bread properties. Revista Iberoamericana de Tecnología Postcosecha, 17(2), 307–317 (in Spanish, English abstract).
Venskutonis, P.R., Kraujalis, P. (2013). Nutritional components of amaranth seeds and vegetables: a review on composition, properties, and uses. Comprehensive Reviews in Food Science and Food Safety, 12(4), 381–412.
Vidaurre-Ruiz, J., Matheus-Diaz, S., Salas-Valerio, F., Barraza-Jauregui, G., Schoenlechner, R., Repo-Carrasco-Valencia, R. (2019). Influence of tara gum and xanthan gum on rheological and textural properties of starch-based gluten-free dough and bread. European Food Research and Technology, 245, 1347–1355.
Vilcanqui-Pérez, F., Chaquilla-Quilca, G., Sarmiento-Casavilca, V.H., Céspedes-Orosco, C.N., Ventura-Saldivar, Y. (2022). Nutritional, physical and sensory characteristics of bread with the inclusion of germinated basul (Erythrina edulis) flour. Journal of Food Science Technology, 59, 2117–2126.
Wieser, H., Koehler, P., Scherf, K.A. (2022). Chemistry of wheat gluten proteins: Qualitative composition. Cereal Chemistry, 100(1), 23–35.
Yamsaengsung, R., Schoenlechner, R., Berghofer, E. (2010). The effects of chickpea on the functional properties of white and whole wheat bread. International Journal of Food Science and Technology, 45(3), 610–620.
Journals System - logo
Scroll to top