Search for Author, Title, Keyword
Curcumin Prevents Free Fatty Acid-Induced Lipid Accumulation via Targeting the miR-22-3p/CRLS1 Pathway in HepG2 Cells
Xiaoting Sun 1,2,3
Xiaowen Wu 1,2,3
Jian Li 1,2
More details
Hide details
College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, P. R. China
Fujian Marine Functional Food Engineering Technology Research Center, Xiamen, Fujian 361021, P. R. China
HI. Q Biomedical Laboratory, Taiwan Investment Zone, Quanzhou, Fujian, 362123, P. R. China
Center for Precision Medicine, Yi He Hospital, Taiwan Investment Zone, Quanzhou, Fujian, 362123, P. R. China
Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, P. R. China
These authors had equal contribution to this work
Submission date: 2023-11-08
Acceptance date: 2024-01-22
Online publication date: 2024-02-13
Publication date: 2024-02-13
Corresponding author
Guiling Li   

College of Ocean Food and Biological Engineering, Jimei University, China
Pol. J. Food Nutr. Sci. 2024;74(1):59-68
Dysregulated lipid metabolism in liver is an important hallmark of non-alcoholic fatty liver disease (NAFLD), which may be modulated by dietary polyphenols or microRNAs (miRNAs). However, the underlying epigenetic regulatory mechanism of polyphenols remain unclear. The current study aimed to address how miRNA mediates hepatic lipid metabolic control of curcumin, a polyphenolic food supplement. The results showed that 24 h treatment with 5 - 20 μM curcumin prevented free fatty acid-induced lipid accumulation by around 10 ~ 50% in HepG2 cells, which was attenuated by pre-transfection with 40 nM miR-22-3p mimic for 48 h. In consequence, transfection with 40 nM miR-22-3p inhibitor for 48 h significantly reduced lipid accumulation by around 10%. And 48 h overexpression of miR-22-3p targeting cardiolipin synthase 1 (CRLS1) gene, which encodes a mitochondrial phospholipid synthase, showed a similar regulatory effect. Thus, miR-22-3p and CRLS1 showed opposite effects in modulating lipid metabolism, which probably involved mitochondrial control. In summary, this study demonstrated that curcumin improved hepatic lipid metabolism via targeting the miR-22-3p/CRLS1 pathway. Identification of the epigenetic regulatory mechanism underlying lipid metabolism may thereby facilitate alleviation of metabolic disorders by natural polyphenols.
This work was supported by the National Natural Science Foundation of China (31771972), the Natural Science Foundation of Fujian Province (2017J01447), Fujian Province Young and Middle-aged Teachers Education Research Project (JAT200247), the opening project of National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products (Z823288), the Science and Technology Project of Quanzhou (2017Z003) and the High-level Talent Innovation Project of Quanzhou (2019CT007).
The authors declare that they have no conflicts of interest.
Abenavoli, L., Larussa, T., Corea, A., Procopio, A.C., Boccuto, L., Dallio, M., Federico, A., Luzza, F. (2021). Dietary polyphenols and non-alcoholic fatty liver disease. Nutrients, 13(2), art. no. 494.
Agbu, P., Carthew, R.W. (2021). MicroRNA-mediated regulation of glucose and lipid metabolism. Nature Reviews Molecular Cell Biology, 22(6), 425-438.
Arab, J.P., Arrese, M., Trauner, M. (2018). Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annual Review of Pathology: Mechanisms of Disease, 13(1), 321-350.
Azar, S., Udi, S., Drori, A., Hadar, R., Nemirovski, A., Vemuri, K.V., Miller, M., Sherill-Rofe, D., Arad, Y., Gur-Wahnon, D., Li, X., Makriyannis, A., Ben-Zvi, D., Tabach, Y., Ben-Dov, I.Z., Tam, J. (2020). Reversal of diet-induced hepatic steatosis by peripheral CB1 receptor blockade in mice is p53/miRNA-22/SIRT1/PPARα dependent. Molecular Metabolism, 42, art. no. 101087.
Buzzetti, E., Pinzani, M., Tsochatzis, E.A. (2016). The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism, 65(8), 1038-1048.
Calkin, A.C., Tontonoz, P. (2012). Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nature Reviews Molecular Cell Biology, 13(4), 213-224.
Castaño, C., Novials, A., Párrizas, M. (2022). Exosomes from short-term high-fat or high-sucrose fed mice induce hepatic steatosis through different pathways. Cells, 12(1), art. no. 169.
Chen, Y., Wang, Y., Lin, W., Sheng, R., Wu, Y., Xu, R., Zhou, C., Yuan, Q. (2020). AFF1 inhibits adipogenic differentiation via targeting TGM2 transcription. Cell Proliferation, 53(6), art. no. e12831.
Degasperi, E., Colombo, M. (2016). Distinctive features of hepatocellular carcinoma in non-alcoholic fatty liver disease. The Lancet Gastroenterology & Hepatology, 1(2), 156-164.
Ding, D., Ye, G., Lin, Y., Lu, Y., Zhang, H., Zhang, X., Hong, Z., Huang, Q., Chi, Y., Chen, J., Dong, S. (2019). MicroRNA-26a-CD36 signaling pathway: Pivotal role in lipid accumulation in hepatocytes induced by PM2.5 liposoluble extracts. Environmental Pollution, 248, 269-278.
Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M., Sanyal, A.J. (2018). Mechanisms of NAFLD development and therapeutic strategies. Nature Medicine, 24(7), 908-922.
Gjorgjieva, M., Ay, A.-S., Correia de Sousa, M., Delangre, E., Dolicka, D., Sobolewski, C., Maeder, C., Fournier, M., Sempoux, C., Foti, M. (2022). MiR-22 deficiency fosters hepatocellular carcinoma development in fatty liver. Cells, 11(18), art. no. 2680.
Gjorgjieva, M., Sobolewski, C., Ay, A.-S., Abegg, D., Correia de Sousa, M., Portius, D., Berthou, F., Fournier, M., Maeder, C., Rantakari, P., Zhang, F.-P., Poutanen, M., Picard, D., Montet, X., Nef, S., Adibekian, A., Foti, M. (2020). Genetic ablation of MiR-22 fosters diet-induced obesity and NAFLD development. Journal of Personalized Medicine, 10(4), art. no. 170.
Gjorgjieva, M., Sobolewski, C., Dolicka, D., Correia de Sousa, M., Foti, M. (2019). miRNAs and NAFLD: from pathophysiology to therapy. Gut, 68(11), 2065-2079.
Gómez-Lechón, M.J., Donato, M.T., Martínez-Romero, A., Jiménez, N., Castell, J.V., O’Connor, J.-E. (2007). A human hepatocellular in vitro model to investigate steatosis. Chemico-Biological Interactions, 165(2), 106-116.
Hayakawa, S., Ohishi, T., Oishi, Y., Isemura, M., Miyoshi, N. (2022). Contribution of non-coding RNAs to anticancer effects of dietary polyphenols: chlorogenic acid, curcumin, epigallocatechin-3-gallate, genistein, quercetin and resveratrol. Antioxidants, 11(12), art. no. 2352.
Hernandez-Rodas, M.C., Valenzuela, R., Videla, L.A. (2015). Relevant aspects of nutritional and dietary interventions in non-alcoholic fatty liver disease. International Journal of Molecular Sciences, 16(10), 25168-25198.
Hu, Y., Liu, H.X., Jena, P.K., Sheng, L., Ali, M.R., Wan, Y.Y. (2020). miR-22 inhibition reduces hepatic steatosis via FGF21 and FGFR1 induction. JHEP Reports, 2(2), art. no. 100093.
Kawata, Y., Okuda, S., Hotta, N., Igawa, H., Takahashi, M., Ikoma, M., Kasai, S., Ando, A., Satomi, Y., Nishida, M., Nakayama, M., Yamamoto, S., Nagisa, Y., Takekawa, S. (2017). A novel and selective melanin-concentrating hormone receptor 1 antagonist ameliorates obesity and hepatic steatosis in diet-induced obese rodent models. European Journal of Pharmacology, 796, 45-53.
Kloska, A., Węsierska, M., Malinowska, M., Gabig-Cimiśska, M., Jakóbkiewicz-Banecka, J. (2020). Lipophagy and lipolysis status in lipid storage and lipid metabolism diseases. International Journal of Molecular Sciences, 21(17), art. no. 6113.
Lee, Y.J., Ko, E.H., Kim, J.E., Kim, E., Lee, H., Choi, H., Yu, J.H., Kim, H.J., Seong, J.-K., Kim, K.-S., Kim, J.-w. (2012). Nuclear receptor PPARγ-regulated monoacylglycerol O-acyltransferase 1 (MGAT1) expression is responsible for the lipid accumulation in diet-induced hepatic steatosis. Proceedings of the National Academy of Sciences of the United States of America, 109(34), 13656-13661.
Li, S., You, J., Wang, Z., Liu, Y., Wang, B., Du, M., Zou, T. (2021). Curcumin alleviates high-fat diet-induced hepatic steatosis and obesity in association with modulation of gut microbiota in mice. Food Research International, 143, art. no. 110270.
Lonardo, A., Nascimbeni, F., Mantovani, A., Targher, G. (2018). Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? Journal of Hepatology, 68(2), 335-352.
Long, J.K., Dai, W., Zheng, Y.W., Zhao, S.P. (2019). miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease. Molecular Medicine, 25(1), art. no. 26.
Panella, R., Petri, A., Desai, B.N., Fagoonee, S., Cotton, C.A., Nguyen, P.K., Lundin, E.M., Wagshal, A., Wang, D.-Z., Näär, A.M., Vlachos, I.S., Maratos-Flier, E., Altruda, F., Kauppinen, S., Pandolfi, P.P. (2023). MicroRNA-22 is a key regulator of lipid and metabolic homeostasis. International Journal of Molecular Sciences, 24(16), art. no. 12870.
Peng, K.-Y., Watt, M.J., Rensen, S., Greve, J.W., Huynh, K., Jayawardana, K.S., Meikle, P.J., Meex, R.C.R. (2018). Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression. Journal of Lipid Research, 59(10), 1977-1986.
Rafiei, H., Omidian, K., Bandy, B. (2019). Dietary polyphenols protect against oleic acid-induced steatosis in an in vitro model of NAFLD by modulating lipid metabolism and improving mitochondrial function. Nutrients, 11(3), art. no. 541.
Rahmani, S., Asgary, S., Askari, G., Keshvari, M., Hatamipour, M., Feizi, A., Sahebkar, A. (2016). Treatment of non-alcoholic fatty liver disease with curcumin: A randomized placebo-controlled trial. Phytotherapy Research, 30(9), 1540-1548.
Shan, D., Wang, J., Di, Q., Jiang, Q., Xu, Q. (2022). Steatosis induced by nonylphenol in HepG2 cells and the intervention effect of curcumin. Food & Function, 13(1), 327-343.
Sun, X., Li, Y., Lin, Y., Mei, Y., Lin, L., Ho, K.-T., Huang, K., Zhan, J., Chen, C., Zeng, J., Wu, D., Li, J., Liu, J., Li, G. (2023). MiR-22-3p modulated the antioxidant activity of curcumin via targeting the cardiolipin synthase gene CRLS1 in LO2 cells. Journal of Functional Foods, 104, art. no. 105541.
Thibonnier, M., Esau, C., Ghosh, S., Wargent, E., Stocker, C. (2020). Metabolic and energetic benefits of microRNA-22 inhibition. BMJ Open Diabetes Research & Care, 8(1), art. no. e001478.
Tian, L., Song, Z., Shao, W., Du, W.W., Zhao, L.R., Zeng, K., Yang, B.B., Jin, T. (2018). Curcumin represses mouse 3T3-L1 cell adipogenic differentiation via inhibiting miR-17-5p and stimulating the Wnt signalling pathway effector Tcf7l2. Cell Death & Disease, 8(1), art. no. e2559.
Tu, C., Xiong, H., Hu, Y., Wang, W., Mei, G., Wang, H., Li, Y., Zhou, Z., Meng, F., Zhang, P., Mei, Z. (2020). Cardiolipin synthase 1 ameliorates NASH through activating transcription factor 3 transcriptional inactivation. Hepatology, 72(6), 1949-1967.
Veitch, S., Njock, M.S., Chandy, M., Siraj, M.A., Chi, L., Mak, H., Yu, K., Rathnakumar, K., Perez-Romero, C.A., Chen, Z., Alibhai, F.J., Gustafson, D., Raju, S., Wu, R., Zarrin Khat, D., Wang, Y., Caballero, A., Meagher, P., Lau, E., Pepic, L., Cheng, H.S., Galant, N.J., Howe, K.L., Li, R.K., Connelly, K.A., Husain, M., Delgado-Olguin, P., Fish, J.E. (2022). MiR-30 promotes fatty acid beta-oxidation and endothelial cell dysfunction and is a circulating biomarker of coronary microvascular dysfunction in pre-clinical models of diabetes. Cardiovascular Diabetology, 21(1), art. no. 31.
Wang, Y.-D., Wu, L.-L., Mai, Y.-N., Wang, K., Tang, Y., Wang, Q.-Y., Li, J.-Y., Jiang, L.-Y., Liao, Z.-Z., Hu, C., Wang, Y.-Y., Liu, J.-J., Liu, J.-H., Xiao, X.-H. (2023). miR-32-5p induces hepatic steatosis and hyperlipidemia by triggering de novo lipogenesis. Metabolism, 146, art. no. 155660.
Wang, Y., Chen, C., Chen, J., Sang, T., Peng, H., Lin, X., Zhao, Q., Chen, S., Eling, T., Wang, X. (2022). Overexpression of NAG-1/GDF15 prevents hepatic steatosis through inhibiting oxidative stress-mediated dsDNA release and AIM2 inflammasome activation. Redox Biology, 52, art. no. 102322.
Xu, Y., Xu, Y., Zhu, Y., Sun, H., Juguilon, C., Li, F., Fan, D., Yin, L., Zhang, Y. (2020). Macrophage miR-34a is a key regulator of cholesterol efflux and atherosclerosis. Molecular Therapy, 28(1), 202-216.
Yan, C., Zhang, Y., Zhang, X., Aa, J., Wang, G., Xie, Y. (2018). Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomedicine & Pharmacotherapy, 105, 274-281.
Yoon, H., Shaw, J.L., Haigis, M.C., Greka, A. (2021). Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Molecular Cell, 81(18), 3708-3730.
Zhang, F., Li, Y., Xin, W., Wang, L., Zhang, Y., Xu, H., Wang, H., Zhao, H., Yang, H., Si, N., Bian, B. (2023). Gypenosides and capsaicinoids in combination ameliorates high-fat-diet- induced rat hyperlipidemia via the PPARγ-LXRα-ABCA1/ABCG1 pathway. Journal of Functional Foods, 108, art. no. 105714.
Zhang, M., Sun, W., Zhou, M., Tang, Y. (2017). MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1. Scientific Reports, 7(1), art. no. 14493.
Zhang, M., Tang, Y., Tang, E., Lu, W. (2020). MicroRNA-103 represses hepatic de novo lipogenesis and alleviates NAFLD via targeting FASN and SCD1. Biochemical and Biophysical Research Communications, 524(3), 716-722.
Zhao, Q., Lin, X., Wang, G. (2022). Targeting SREBP-1-mediated lipogenesis as potential strategies for cancer. Frontiers in Oncology, 12, art. no. 952371.
Zhao, T., Wang, J., He, A., Wang, S., Chen, Y., Lu, J., Lv, J., Li, S., Wang, J., Qian, M., Li, H., Shen, X. (2021). Mebhydrolin ameliorates glucose homeostasis in type 2 diabetic mice by functioning as a selective FXR antagonist. Metabolism, 119, art. no. 154771.
Journals System - logo
Scroll to top