Search for Author, Title, Keyword
Current Perspective About the Effect of a Ketogenic Diet on Oxidative Stress – a Review
More details
Hide details
Food Volatilomics and Sensomics Group Department of Food Technology of Plant Origin Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poland
Submission date: 2024-01-18
Acceptance date: 2024-02-26
Online publication date: 2024-03-07
Publication date: 2024-03-07
Corresponding author
Natalia Drabińska   

Food Volatilomics and Sensomics Group Department of Food Technology of Plant Origin Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
Pol. J. Food Nutr. Sci. 2024;74(1):92-105
Oxidative stress (OS) plays a pivotal role in the development of many diseases. Therefore, many efforts have been undertaken to minimize the consequences of OS or improve antioxidant defence systems. One solution expected to improve redox homeostasis is the ketogenic diet (KD). KD is a low-carbohydrate, high-fat diet leading to a ketosis state. The shift in metabolism occurring in ketosis can affect the reactive oxygen species (ROS)-producing pathways and influence the expression of enzymes involved in redox homeostasis. Therefore, this review summarizes and discusses existing knowledge about KD and ROS homeostasis. The available tools for evaluating OS status are presented, listing their potential and drawbacks. An important aspect is the summary of the current knowledge about the effect of KD on OS conducted in vitro, in vivo, and in clinical trials. Finally, the review addresses future studies needed to understand the connection between KD and OS.
This study was financially supported by the National Science Centre, Poland (Project No. 2021/41/B/NZ9/01278).
The author declares no conflict of interest.
Afshinnia, F., Zeng, L., Byun, J., Gadegbeku, C.A., Magnone, M.C., Whatling, C., Valastro, B., Kretzler, M., Pennathur, S. (2017). Myeloperoxidase levels and its product 3-chlorotyrosine predict chronic kidney disease severity and associated coronary artery disease. American Journal of Nephrology, 46(1), 73–81.
Alhamzah, S.A., Gatar, O.M., Alruwaili, N.W. (2023). Effects of ketogenic diet on oxidative stress and cancer: A literature review. Advances in Cancer Biology - Metastasis, 7, art. no.100093.
Allen, B.G., Bhatia, S.K., Buatti, J.M., Brandt, K.E., Lindholm, K.E., Button, A.M., Szweda, L.I., Smith, B.J., Spitz, D.R., Fath, M.A. (2013). Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clinical Cancer Research, 19(14), 3905–3913.
Apak, R., Güçlü, K., Özyürek, M., Bektaşoğlu, B., Bener, M. (2010). Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers. In: D. Armstrong (Ed). Advanced Protocols in Oxidative Stress II, Human Press, pp. 215–239.
Apak, R., Güçlü, K., Özyürek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970–7981.
Aratani, Y. (2018). Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Archives of Biochemistry and Biophysics, 640, 47–52.
Bafana, A., Dutt, S., Kumar, A., Kumar, S., Ahuja, P.S. (2011). The basic and applied aspects of superoxide dismutase. Journal of Molecular Catalysis B: Enzymatic, 68(2), 129–138.
Barry, D., Ellul, S., Watters, L., Lee, D., Haluska, R., White, R. (2018). The ketogenic diet in disease and development. International Journal of Developmental Neuroscience, 68(1), 53–58.
Bártíková, H., Boušová, I., Matoušková, P., Szotáková, B., Skálová, L. (2017). Effect of green tea extract-enriched diets on insulin and leptin levels, oxidative stress parameters and antioxidant enzymes activities in obese mice. Polish Journal of Food and Nutrition Sciences, 67(3), 233–240.
Bartoli, M.L., Novelli, F., Costa, F., Malagrinò, L., Melosini, L., Bacci, E., Cianchetti, S., Dente, F.L., Di Franco, A., Vagaggini, B., Paggiaro, P.L. (2011). Malondialdehyde in exhaled breath condensate as a marker of oxidative stress in different pulmonary diseases. Mediators of Inflammation, 2011, art. no. 891752.
Barzegar, M., Afghan, M., Tarmahi, V., Behtari, M., Rahimi Khamaneh, S., Raeisi, S. (2021). Ketogenic diet: overview, types, and possible anti-seizure mechanisms. Nutritional Neuroscience, 24(4), 307–316.
Bedard, K., Krause, K.-H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87(1), 245–313.
Board, M., Lopez, C., van den Bos, C., Callaghan, R., Clarke, K., Carr, C. (2017). Acetoacetate is a more efficient energy-yielding substrate for human mesenchymal stem cells than glucose and generates fewer reactive oxygen species. The International Journal of Biochemistry Cell Biology, 88, 75–83.
Bostock, E.C.S., Kirkby, K.C., Taylor, B.V, Hawrelak, J.A. (2020). Consumer reports of “keto flu” associated with the ketogenic diet. Frontiers in Nutrition, 7, art. no. 20.
Broedbaek, K., Siersma, V., Henriksen, T., Weimann, A., Petersen, M., Andersen, J.T., Jimenez-Solem, E., Stovgaard, E.S., Hansen, L.J., Henriksen, J. E., Bonnema, S.J., de Fine Olivarius, N., Poulsen, H.E. (2011). Urinary markers of nucleic acid oxidation and long-term mortality of newly diagnosed type 2 diabetic patients. Diabetes Care, 34(12), 2594–2596.
Chatuphonprasert, W., Sriset, Y., Jarukamjorn, K. (2019). Continuous consumption of reused palm oil induced hepatic injury, depletion of glutathione stores, and modulation of cytochrome P450 profiles in mice. Polish Journal of Food and Nutrition Sciences, 69(1), 53–61.
Chen, S., Chen, H., Du, Q., Shen, J. (2020). Targeting myeloperoxidase (MPO) mediated oxidative stress and inflammation for reducing brain ischemia injury: Potential Application of natural compounds. Frontiers in Physiology, 11, art. no. 433.
Chitisankul, W., Shimada, K., Tsukamoto, C. (2022). Antioxidative capacity of soyfoods and soy active compounds. Polish Journal of Food and Nutrition Sciences, 72(1), 101–108.
Cristani, M., Speciale, A., Saija, A., Gangemi, S., Minciullo, P., Cimino, F. (2016). Circulating advanced oxidation protein products as oxidative stress biomarkers and progression mediators in pathological conditions related to inflammation and immune dysregulation. Current Medicinal Chemistry, 23(34), 3862–3882.
Crosby, L., Davis, B., Joshi, S., Jardine, M., Paul, J., Neola, M., Barnard, N.D. (2021). Ketogenic diets and chronic disease: Weighing the benefits against the risks. Frontiers in Nutrition, 8, art. no. 702802.
Człapka-Matyasik, M., Ast, K. (2014). Total antioxidant capacity and its dietary sources and seasonal variability in diets of women with different physical activity levels. Polish Journal of Food and Nutrition Sciences, 64(4), 267–276.
Davies, M.J. (2016). Protein oxidation and peroxidation. Biochemical Journal, 473(7), 805–825.
Deponte, M. (2013). Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(5), 3217–3266.
Dizdaroglu, M., Jaruga, P., Birincioglu, M., Rodriguez, H. (2002). Free radical-induced damage to DNA: Mechanisms and measurement. Free Radical Biology and Medicine, 32(11), 1102–1115.
Drabińska, N., Ciska, E., Szmatowicz, B., Krupa-Kozak, U. (2018). Broccoli by-products improve the nutraceutical potential of gluten-free mini sponge cakes. Food Chemistry, 267, 170–177.
Drabińska, N., Juśkiewicz, J., Wiczkowski, W. (2022). The effect of the restrictive ketogenic diet on the body composition, haematological and biochemical parameters, oxidative stress and advanced glycation end-products in young Wistar rats with diet-induced obesity. Nutrients, 14(22), art. no. 4805.
Drabińska, N., Romaszko, J., White, P. (2023). The effect of isocaloric, energy-restrictive, KETOgenic diet on metabolism, inflammation, nutrition deficiencies and oxidative stress in women with overweight and obesity (KETO-MINOX): Study protocol. PLoS ONE, 18(5), art. no. e0285283.
Drabińska, N., Wiczkowski, W., Piskuła, M. K. (2021). Recent advances in the application of a ketogenic diet for obesity management. Trends in Food Science and Technology, 110, 28–38.
Dreiβigacker, U., Suchy, M.-T., Maassen, N., Tsikas, D. (2010). Human plasma concentrations of malondialdehyde (MDA) and the F2-isoprostane 15(S)-8-iso-PGF2α may be markedly compromised by hemolysis: Evidence by GC-MS/MS and potential analytical and biological ramifications. Clinical Biochemistry, 43(1–2), 159–167.
Elamin, M., Ruskin, D.N., Masino, S.A., Sacchetti, P. (2017). Ketone-based metabolic therapy: Is increased NAD+ a primary mechanism? Frontiers in Molecular Neuroscience, 10, art. no. 377.
Fraga, C.G., Oteiza, P.I., Galleano, M. (2014). In vitro measurements and interpretation of total antioxidant capacity. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(2), 931–934.
Frijhoff, J., Winyard, P.G., Zarkovic, N., Davies, S.S., Stocker, R., Cheng, D., Knight, A.R., Taylor, E.L., Oettrich, J., Ruskovska, T., Gasparovic, A. C., Cuadrado, A., Weber, D., Poulsen, H.E., Grune, T., Schmidt, H.H.H. W., Ghezzi, P. (2015). Clinical relevance of biomarkers of oxidative stress. Antioxidants Redox Signaling, 23(14), 1144–1170.
Greco, T., Glenn, T.C., Hovda, D.A., Prins, M.L. (2016). Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity. Journal of Cerebral Blood Flow and Metabolism, 36(9), 1603–1613.
Harvey, C.J.dC., Schofield, G.M., Williden, M. (2018). The use of nutritional supplements to induce ketosis and reduce symptoms associated with keto-induction: A narrative review. PeerJ, 6, art. no. e4488.
Ho, E., Karimi Galougahi, K., Liu, C.-C., Bhindi, R., Figtree, G.A. (2013). Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biology, 1(1), 483–491.
Ialongo, C. (2017). Preanalytic of total antioxidant capacity assays performed in serum, plasma, urine and saliva. Clinical Biochemistry, 50(6), 356–363.
Il’yasova, D., Morrow, J.D., Ivanova, A., Wagenknecht, L.E. (2004). Epidemiological marker for oxidant status: comparison of the ELISA and the gas chromatography/mass spectrometry assay for urine 2,3-dinor-5,6-dihydro-15-F2t-isoprostane. Annals of Epidemiology, 14(10), 793–797.
Jarrett, S.G., Milder, J.B., Liang, L., Patel, M. (2008). The ketogenic diet increases mitochondrial glutathione levels. Journal of Neurochemistry, 106(3), 1044–1051.
Johnston, B.C., Kanters, S., Bandayrel, K., Wu, P., Naji, F., Siemieniuk, R.A., Ball, G.D.C., Busse, J.W., Thorlund, K., Guyatt, G., Jansen, J.P., Mills, E.J. (2014). Comparison of weight loss among named diet programs in overweight and obese adults: A meta-analysis. JAMA, 312(9), 923–933.
Jorgensen, A., Broedbaek, K., Fink-Jensen, A., Knorr, U., Greisen Soendergaard, M., Henriksen, T., Weimann, A., Jepsen, P., Lykkesfeldt, J., Enghusen Poulsen, H., Balslev Jorgensen, M. (2013). Increased systemic oxidatively generated DNA and RNA damage in schizophrenia. Psychiatry Research, 209(3), 417–423.
Jørs, A., Lund, M.A.V., Jespersen, T., Hansen, T., Poulsen, H.E., Holm, J.-C. (2020). Urinary markers of nucleic acid oxidation increase with age, obesity and insulin resistance in Danish children and adolescents. Free Radical Biology and Medicine, 155, 81–86.
Julio-Amilpas, A., Montiel, T., Soto-Tinoco, E., Gerónimo-Olvera, C., Massieu, L. (2015). Protection of hypoglycemia-induced neuronal death by β-hydroxybutyrate involves the preservation of energy levels and decreased production of reactive oxygen species. Journal of Cerebral Blood Flow Metabolism, 35(5), 851–860.
Kaburagi, T., Kanaki, K., Otsuka, Y., Hino, R. (2019). Low-carbohydrate diet inhibits different advanced glycation end products in kidney depending on lipid composition but causes adverse morphological changes in a non-obese model mice. Nutrients, 11(11), art. no. 2801.
Karadag, A., Bozkurt, F., Bekiroglu, H., Sagdic, O. (2020). Use of principal component analysis and cluster analysis for differentiation of traditionally-manufactured vinegars based on phenolic and volatile profiles, and antioxidant activity. Polish Journal of Food and Nutrition Sciences, 70(4), 347–360.
Karim, N., Jenduang, N., Tangpong, J. (2018). Anti-glycemic and anti-hepatotoxic effects of mangosteen vinegar rind from Garcinia mangostana against HFD/STZ-induced type II diabetes in mice. Polish Journal of Food and Nutrition Sciences, 68(2), 163–169.
Keene, D.L. (2006). A systematic review of the use of the ketogenic diet in childhood epilepsy. Pediatric Neurology, 35(1), 1–5.
Kehm, R., Baldensperger, T., Raupbach, J., Höhn, A. (2021). Protein oxidation – Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biology, 42, art. no. 101901.
Kephart, W., Mumford, P., Mao, X., Romero, M., Hyatt, H., Zhang, Y., Mobley, C., Quindry, J., Young, K., Beck, D., Martin, J., McCullough, D., D’Agostino, D., Lowery, R., Wilson, J., Kavazis, A., Roberts, M. (2017). The 1-week and 8-month effects of a ketogenic diet or ketone salt supplementation on multi-organ markers of oxidative stress and mitochondrial function in rats. Nutrients, 9(9), art. no. 1019.
Krupa-Kozak, U., Drabińska, N., Bączek, N., Šimková, K., Starowicz, M., Jeliński, T. (2021). Application of broccoli leaf powder in gluten-free bread: an innovative approach to improve its bioactive potential and technological quality. Foods, 10(4), art. no. 819.
Lamichhane, S., Bastola, T., Pariyar, R., Lee, E.-S., Lee, H.-S., Lee, D., Seo, J. (2017). ROS production and ERK activity are involved in the effects of d-β-hydroxybutyrate and metformin in a glucose deficient condition. International Journal of Molecular Sciences, 18(3), art. no. 674.
Ligor, M., Ligor, T., Gadzała‐Kopciuch, R., Buszewski, B. (2015). The chromatographic assay of 4‐hydroxynonenal as a biomarker of diseases by means of MEPS and HPLC technique. Biomedical Chromatography, 29(4), 584–589.
Liśkiewicz, D., Liśkiewicz, A., Grabowski, M., Nowacka-Chmielewska, M.M., Jabłońska, K., Wojakowska, A., Marczak, Barski, J.J., Małecki, A. (2021). Upregulation of hepatic autophagy under nutritional ketosis. The Journal of Nutritional Biochemistry, 93, art. no. 108620.
Magnani, F., Mattevi, A. (2019). Structure and mechanisms of ROS generation by NADPH oxidases. Current Opinion in Structural Biology, 59, 91–97.
Majrashi, M., Altukri, M., Ramesh, S., Govindarajulu, M., Schwartz, J., Almaghrabi, M., Smith, F., Thomas, T., Suppiramaniam, V., Moore, T., Reed, M., Dhanasekaran, M. (2021). β-Hydroxybutyric acid attenuates oxidative stress and improves markers of mitochondrial function in the HT-22 hippocampal cell line. Journal of Integrative Neuroscience, 20(2), 321–329.
Marrocco, I., Altieri, F., Peluso, I. (2017). Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxidative Medicine and Cellular Longevity, 2017, art. no. 6501046.
Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A., Tschopp, J. (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 440(7081), 237–241.
Milder, J.B., Liang, L.-P., Patel, M. (2010). Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet. Neurobiology of Disease, 40(1), 238–244.
Milder, J., Patel, M. (2012). Modulation of oxidative stress and mitochondrial function by the ketogenic diet. Epilepsy Research, 100(3), 295–303.
Moolwong, J., Klinthong, W., Chuacharoen, T. (2023). Physicochemical properties, antioxidant capacity, and consumer acceptability of ice cream incorporated with avocado (Persea Americana Mill.) pulp. Polish Journal of Food and Nutrition Sciences, 73(3), 289–296.
Moreno, B., Crujeiras, A.B., Bellido, D., Sajoux, I., Casanueva, F.F. (2016). Obesity treatment by very low-calorie-ketogenic diet at two years: reduction in visceral fat and on the burden of disease. Endocrine, 54, 681–690.
Nathan, C., Cunningham-Bussel, A. (2013). Beyond oxidative stress: An immunologist’s guide to reactive oxygen species. Nature Reviews Immunology, 13(5), 349–361.
Nazarewicz, R.R., Ziolkowski, W., Vaccaro, P.S., Ghafourifar, P. (2007). Effect of short-term ketogenic diet on redox status of human blood. Rejuvenation Research, 10(4), 435–440.
Nguyen, T.P.T., Tran, T.T.T., Ton, N.M.N., Le, V.V.M. (2023). Use of cashew apple pomace powder in pasta making: Effects of powder ratio on the product quality. Polish Journal of Food and Nutrition Sciences, 73(1), 50–58.
Niculescu, L., Stancu, C., Sima, A., Toporan, D., Simionescu, M. (2001). The total peroxyl radical trapping potential in serum – an assay to define the stage of atherosclerosis. Journal of Cellular and Molecular Medicine, 5(3), 285–294.
Nishino, T., Okamoto, K., Eger, B.T., Pai, E.F., Nishino, T. (2008). Mammalian xanthine oxidoreductase – mechanism of transition from xanthine dehydrogenase to xanthine oxidase. The FEBS Journal, 275(13), 3278–3289.
Ota, M., Matsuo, J., Ishida, I., Takano, H., Yokoi, Y., Hori, H., Yoshida, S., Ashida, K., Nakamura, K., Takahashi, T., Kunugi, H. (2019). Effects of a medium-chain triglyceride-based ketogenic formula on cognitive function in patients with mild-to-moderate Alzheimer’s disease. Neuroscience Letters, 690, 232–236.
Ozenirler, S., Erkan, G., Gulbahar, O., Bostankolu, O., Ozbas Demirel, O., Bilgihan, A., Akyol, G. (2011). Serum levels of advanced oxidation protein products, malonyldialdehyde, and total radical trapping antioxidant parameter in patients with chronic hepatitis C. Turkish Journal of Gastroenterology, 22(1), 47–53.
Paoli, A. (2014). Ketogenic diet for obesity: Friend or foe? International Journal of Environmental Research and Public Health, 11(2), 2092–2107.
Papierska, K., Ignatowicz, E., Jodynis-Liebert, J., Kujawska, M., Biegańska-Marecik, R. (2022). Effects of long-term dietary administration of kale (Brassica oleracea; L. var. acephala DC) leaves on the antioxidant status and blood biochemical markers in rats. Polish Journal of Food and Nutrition Sciences, 72(3), 239–247.
Parry, H.A., Kephart, W.C., Mumford, P.W., Romero, M.A., Mobley, C.B., Zhang, Y., Roberts, M.D., Kavazis, A.N. (2018). Ketogenic diet increases mitochondria volume in the liver and skeletal muscle without altering oxidative stress markers in rats. Heliyon, 4(11), art. no. e00975.
Pegg, R.B., Amarowicz, R., Naczk, M., Shahidi, F. (2007). PHOTOCHEM® for determination of antioxidant capacity of plant extracts. In F. Shahidi, C.T. Ho (Eds.). Antioxidant Measurement and Applications, ACS Symposium Series 956, Washington, USA, pp. 140-158.
Pelclova, D., Zdimal, V., Schwarz, J., Dvorackova, S., Komarc, M., Ondracek, J., Kostejn, M., Kacer, P., Vlckova, S., Fenclova, Z., Popov, A., Lischkova, L., Zakharov, S., Bello, D. (2018). Markers of oxidative stress in the exhaled breath condensate of workers handling nanocomposites. Nanomaterials, 8(8), art. no. 611.
Pellegrini, N., Vitaglione, P., Granato, D., Fogliano, V. (2020). Twenty‐five years of total antioxidant capacity measurement of foods and biological fluids: merits and limitations. Journal of the Science of Food and Agriculture, 100(14), 5064–5078.
Phillips, M.C.L., Murtagh, D.K.J., Gilbertson, L.J., Asztely, F.J.S., Lynch, C.D.P. (2018). Low-fat versus ketogenic diet in Parkinson’s disease: A pilot randomized controlled trial. Movement Disorders, 33(8), 1306–1314.
Pilone, V., Tramontano, S., Renzulli, M., Romano, M., Cobellis, L., Berselli, T., Schiavo, L. (2018). Metabolic effects, safety, and acceptability of very low-calorie ketogenic dietetic scheme on candidates for bariatric surgery. Surgery for Obesity and Related Diseases, 14(7), 1013–1019.
Poff, A.M., Ari, C., Seyfried, T.N., D’Agostino, D.P. (2013). The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS ONE, 8(6), art. no. e65522.
Poorshiri, B., Barzegar, M., Afghan, M., Shiva, S., Shahabi, P., Golchinfar, Z., Yousefi Nodeh, H.R., Raeisi, S. (2023). The effects of ketogenic diet on beta-hydroxybutyrate, arachidonic acid, and oxidative stress in pediatric epilepsy. Epilepsy Behavior, 140, art. no. 109106.
Qu, C., Keijer, J., Adjobo-Hermans, M.J.W., van de Wal, M., Schirris, T., van Karnebeek, C., Pan, Y., Koopman, W.J.H. (2021). The ketogenic diet as a therapeutic intervention strategy in mitochondrial disease. The International Journal of Biochemistry Cell Biology, 138, art. no. 106050.
Ratcliffe, N., Wieczorek, T., Drabińska, N., Gould, O., Osborne, A., De Lacy Costello, B. (2020). A mechanistic study and review of volatile products from peroxidation of unsaturated fatty acids: An aid to understanding the origins of volatile organic compounds from the human body. Journal of Breath Research, 14(3), art. no. 034001.
Rhyu, H., Cho, S.-Y., Roh, H.-T. (2014). The effects of ketogenic diet on oxidative stress and antioxidative capacity markers of Taekwondo athletes. Journal of Exercise Rehabilitation, 10(6), 362–366.
Sawai, M., Yashiro, M., Nishiguchi, Y., Ohira, M., Hirkawa, K. (2004). Growth-inhibitory effects of the ketone body, monoacetoacetin, on human gastric cancer cells with succinyl-CoA: 3-oxoacid CoA-transferase (SCOT) deficiency. Anticancer Research, 24(4), art. no. 2213-2218.
Sepasi Tehrani, H., Moosavi-Movahedi, A.A. (2018). Catalase and its mysteries. Progress in Biophysics and Molecular Biology, 140, 5–12.
Shimazu, T., Hirschey, M.D., Newman, J., He, W., Shirakawa, K., Le Moan, N., Grueter, C.A., Lim, H., Saunders, L.R., Stevens, R.D., Newgard, C.B., Farese, R.V., de Cabo, R., Ulrich, S., Akassoglou, K., Verdin, E. (2013). Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science, 339(6116), 211–214.
Sies, H., Berndt, C., Jones, D.P. (2017). Oxidative stress. Annual Review of Biochemistry, 86(1), 715–748.
Sullivan, P.G., Rippy, N.A., Dorenbos, K., Concepcion, R.C., Agarwal, A.K., Rho, J.M. (2004). The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Annals of Neurology, 55(4), 576–580.
Ta, T.M.N., Hoang, C.H., Nguyen, T.M., Tran, T.T.T., Ton, N.M.N., Van Viet Man, L. (2023). Effects of mulberry pomace addition and transglutaminase treatment on the quality of pasta enriched with antioxidants and dietary fiber. Polish Journal of Food and Nutrition Sciences, 73(4), 301–310.
Taylor, E.L., Armstrong, K.R., Perrett, D., Hattersley, A.T., Winyard, P.G. (2015). Optimisation of an advanced oxidation protein products assay: Its application to studies of oxidative stress in diabetes mellitus. Oxidative Medicine and Cellular Longevity, 2015, art. no. 496271.
Ułamek-Kozioł, M., Czuczwar, S.J., Januszewski, S., Pluta, R. (2019). Ketogenic diet and epilepsy. Nutrients, 11(10), art. no. 2510.
U.S. National Institutes of Health. (2023). In U.S. National Institutes of Health (p. Identifier: NCT05200468).
Üstündağ, H., Doğanay, S., Öztürk, B., Köse, F., Kurt, N., Aydemi̇r Celep, N., Huyut, M.T., Özgeriş, F.B. (2023). Exploring the impact of ketogenic diet and intermittent fasting on male rats’ testicular health: an analysis of hormonal regulation, oxidative stress, and spermatogenesis. Journal of Food Biochemistry, 2023, art. no. 5562120.
Valenzano, A., Polito, R., Trimigno, V., Di Palma, A., Moscatelli, F., Corso, G., Sessa, F., Salerno, M., Montana, A., Di Nunno, N., Astuto, M., Daniele, A., Carotenuto, M., Messina, G., Cibelli, G., Monda, V. (2019). Effects of very low calorie ketogenic diet on the orexinergic system, visceral adipose tissue, and ROS production. Antioxidants, 8(12), art. no. 643.
Wang, X., Wu, X., Liu, Q., Kong, G., Zhou, J., Jiang, J., Wu, X., Huang, Z., Su, W., Zhu, Q. (2017). Ketogenic metabolism inhibits histone deacetylase (HDAC) and reduces oxidative stress after spinal cord injury in rats. Neuroscience, 366, 36–43.
Watanabe, M., Tuccinardi, D., Ernesti, I., Basciani, S., Mariani, S., Genco, A., Manfrini, S., Lubrano, C., Gnessi, L. (2020). Scientific evidence underlying contraindications to the ketogenic diet: An update. Obesity Reviews, 21(10), art. no. e13053.
WHO. (2016). Obesity and overweight: Fact sheet. In WHO Media Centre.
WHO. (2023). World Health Statistics 2023 - A visual summary.
Wieczorek, M.N., Kowalczewski, P.Ł., Drabińska, N., Różańska, M.B., Jeleń, H.H. (2022). Effect of cricket powder incorporation on the profile of volatile organic compounds, free amino acids and sensory properties of gluten-free bread. Polish Journal of Food and Nutrition Sciences, 72(4), 431–442.
Xu, X., Xie, L., Chai, L., Wang, X., Dong, J., Wang, J., Yang, P. (2023). Ketogenic diet inhibits neointimal hyperplasia by suppressing oxidative stress and inflammation. Clinical and Experimental Hypertension, 45(1), art. no. 2229538.
Yapca, O.E., Borekci, B., Suleyman, H. (2013). Ischemia-reperfusion damage. The Eurasian Journal of Medicine, 45(2), 126–127.
Żary-Sikorska, E., Fotschki, B., Kosmala, M., Milala, J., Matusevicius, P., Rawicka, A., Juśkiewicz, J. (2021). Strawberry polyphenol-rich fractions can mitigate disorders in gastrointestinal tract and liver functions caused by a high-fructose diet in experimental rats. Polish Journal of Food and Nutrition Sciences, 71(4), 423–440.
Zhang, Q., Wu, C., Sun, Y., Li, T., Fan, G. (2019). Cytoprotective effect of Morchella esculenta protein hydrolysate and its derivative against H2O2-induced oxidative stress. Polish Journal of Food and Nutrition Sciences, 69(3), 255–265.
Zhao, Z., Lange, D.J., Voustianiouk, A., MacGrogan, D., Ho, L., Suh, J., Humala, N., Thiyagarajan, M., Wang, J., Pasinetti, G.M. (2006). A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neuroscience, 7, art. no. 29.
Zielonka, J., Hardy, M., Michalski, R., Sikora, A., Zielonka, M., Cheng, G., Ouari, O., Podsiadły, R., Kalyanaraman, B. (2017). Recent developments in the probes and assays for measurement of the activity of NADPH oxidases. Cell Biochemistry and Biophysics, 75(3–4), 335–349.
Zilberter, T., Zilberter, Y. (2018). Ketogenic ratio determines metabolic effects of macronutrients and prevents interpretive bias. Frontiers in Nutrition, 5, art. no. 75.
Journals System - logo
Scroll to top