The growth of lactic acid bacteria during liquid-state fermentation of buckwheat flour and changes in pH during the process were analyzed. Eight strains of Lactobacillus were selected as the most active strains used to obtain new fermented flours. Physical properties of buckwheat water biscuits formulated from these fermented flours were studied.
The hardness of freshly prepared biscuits was affected by the lactic acid bacteria applied, with its highest value noted for the water biscuits made of buckwheat flour fermented by L. plantarum IB. Significantly greater differences in hardness values of water biscuits were noted after 24 h storage. Moreover, water biscuits made of the fermented flours were lighter and had a higher browning index as compared to the control biscuits prepared from unfermented buckwheat flour. The obtained results demonstrate the feasibility of selecting lactic acid bacteria for the fermentation of buckwheat flour focusing on some physical properties of the water biscuits.
FUNDING
This research was supported by grant No 2014/15/B/NZ9/04461 from the National Science Centre, Poland.
REFERENCES(31)
1.
AACC, American Association of Cereal Chemists. AACC Official Methods 10-52, Baking quality of cookie flour – micro method. Approved Methods of the American Association of Cereal Chemists (9th ed.). 1995, Minneapolis, MN, USA: AACC.
Bilgiçli N., İbanoğlu S., Effect of pseudo cereal flours on some physical, chemical and sensory properties of bread. J. Food Sci. Technol., 2015, 52, 7525-7529.
Chavan U.D., Chavan J.K., Kadam S.S., Effect of fermentation on soluble proteins and in vitro protein digestibility of sorghum, green gram and sorghum-green gram blends. J. Food Sci., 1988, 53, 1574-1575.
Ciesarová Z., Basil E., Kukurová K., Marková L., Zieliński H., Wronkowska M., Gluten-free muffins based on fermented and unfermented buckwheat flour – content of selected elements. J. Food Nutr. Res., 2016, 55, 2, 108-113.
Coda R., Di Cagno R., Rizzello C.G., Nionelli L., Edema M.O., Gobbetti M., Utilization of African grains for sourdough bread making. J. Food Sci., 2011, 76, 329-335.
Coda R., Rizzello C.G., Gobbetti M., Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of g-aminobutyric acid (GABA). Int. J. Food Microbiol., 2010, 137, 236-245.
Di Cagno R., Filannino P., Vincentini O., Lanera A., Cavoski I., Gobbetti M., Exploitation of Leuconostoc mesenteroides strains to improve shelf life, rheological, sensory and functional features of prickly pear (Opuntia ficus-indica L.) fruit puree. Food Microbiol., 2016, 59, 176-189.
Di Cagno R., Minervini G., Rizzello C.G., De Angelis M., Gobbetti M., Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies. Food Microbiol., 2011, 28, 1062-1071.
Filipčev B., Šimurina O., Bodroža-Solarov M., Vujaković M., Evaluation of physical, textural and microstructural properties of dough and honey biscuits enriched with buckwheat and rye. Chem. Ind. Chem. Eng. Q., 2011, 17, 291-298.
Frias J., Miranda M.L., Doblado R., Vidal-Valverde C., Effect of germination and fermentation on the antioxidant vitamin content and antioxidant capacity of Lupinus albus L. var. Multolupa. Food Chem., 2005, 92, 211-220.
Horszwald A., Troszyńska A., del Castillo M. D., Zieliński H., Protein profile and sensorial properties of rye breads. Eur. Food Res. Technol., 2009, 229, 875-886.
Isleroglu H., Kemerli T., Sakin-Yilmazer M., Guven G., Ozdestan O., Uren A., Kaymak-Ertekin F., Effect of steam baking on acrylamide formation and browning kinetics of cookies. J. Food Sci., 2012, 77, E257-E263.
Kocková M., Dilongová M., Hybenová E., Valík L., Evaluation of cereals and pseudocereals suitability for the development of new probiotic foods. J. Chem., 2013b, article ID 414303, 1-8, [http://dx.doi.org/10.1155/2013...].
Kocková M., Mendel J., Medvedová A., Šturdík E., Valík L., Cereals and pseudocereals as substrates for growth and metabolism of a probiotic strain Lactobacillus rhamnosus GG. J. Food Nutr. Res., 2013a, 52, 25-36.
Lopez A.C.B., Pereira A.J.G., Junqueira R.G., Flour mixture of rice flour, corn and cassava starch in the production of gluten-free white bread. Brazilian Arch. Biol. Technol., 2004, 47, 63–70.
Mohammadi A., Shahin R., Zahra E.D., Alirez K., Kinetic models for colour changes in kiwi fruit slices during hot air drying. World J. Agric. Sci., 2008, 4, 376-383.
Ouoba L.I.I., Rechinger K.B., Barkholt V., Diawara B., Traore A.S., Jakobsen M., Degradation of proteins during the fermentation of African locust bean (Parkia biglobosa) by strains of Bacillus subtilis and Bacillus pumilus for production of Soumbala. J. Appl. Microbiol., 2003, 94, 396-402.
Pelikánová J., Liptáková D., Valík L., Suitability of lactic acid bacteria for fermentation of maize and amaranth. J. Food Nutr. Res., 2015, 54, 354-364.
Santos C.C., Libeck B.S., Schwan R.F., Co-culture fermentation of peanut soy milk for the development of a novel functional beverage. Int. J. Food Microbiol., 2014, 186, 32-41.
Wronkowska M., Haros M., Soral-Śmietana M., Effect of starch substitution by buckwheat flour on gluten-free bread quality. Food Bioprocess Technol., 2013, 6, 1820-1827.
Wronkowska M., Piskuła M.K., Zieliński H., Effect of roasting time of buckwheat groats on the formation of Maillard reaction products and antioxidant capacity. Food Chem., 2016, 196, 355-358.
Wronkowska M., Soral-Śmietana M., Krupa-Kozak U., Buckwheat, as a food component of a high nutritional value, used in the prophylaxis of gastrointestinal diseases. Eur. J. Plant Sci. Biotechnol., 2010, 4 (special issue 1), 64-70.
Lactic Acid Fermentation of Cereals and Pseudocereals: Ancient Nutritional Biotechnologies with Modern Applications Penka Petrova, Kaloyan Petrov Nutrients
Effect of liquid-state fermentation on the antioxidant and functional properties of raw and roasted buckwheat flours Henryk Zieliński, Dorota Szawara-Nowak, Natalia Bączek, Małgorzata Wronkowska Food Chemistry
Bioaccessibility of D-chiro-inositol from water biscuits formulated from buckwheat flours fermented by lactic acid bacteria and fungi Henryk Zieliński, Joanna Honke, Natalia Bączek, Anna Majkowska, Małgorzata Wronkowska LWT
Bioaccessibility of anti-AGEs activity, antioxidant capacity and phenolics from water biscuits prepared from fermented buckwheat flours Henryk Zieliński, Dorota Szawara-Nowak, Małgorzata Wronkowska LWT
ACE Inhibitory Properties and Phenolics Profile of Fermented Flours and of Baked and Digested Biscuits from Buckwheat Henryk Zieliński, Joanna Honke, Joanna Topolska, Natalia Bączek, Mariusz Piskuła, Wiesław Wiczkowski, Małgorzata Wronkowska Foods
Can pseudocereals modulate microbiota by functioning as probiotics or prebiotics? Aysegul Ugural, Aslı Akyol Critical Reviews in Food Science and Nutrition
In Vitro Expanded Bioaccessibility of Quercetin-3-Rutinoside and Quercetin Aglycone from Buckwheat Biscuits Formulated from Flours Fermented by Lactic Acid Bacteria Henryk Zieliński, Wiesław Wiczkowski, Joanna Honke, Mariusz Piskuła Antioxidants
Crossroad of Tradition and Innovation – The Application of Lactic Acid Fermentation to Increase the Nutritional and Health-Promoting Potential of Plant-Based Food Products – a Review Natalia Drabińska, Anna Ogrodowczyk Polish Journal of Food and Nutrition Sciences
Bioaccessibility of Phenolic Acids and Flavonoids from Buckwheat Biscuits Prepared from Flours Fermented by Lactic Acid Bacteria Henryk Zieliński, Wiesław Wiczkowski, Joanna Topolska, Mariusz Piskuła, Małgorzata Wronkowska Molecules
Identification and Bioaccessibility of Maillard Reaction Products and Phenolic Compounds in Buckwheat Biscuits Formulated from Flour Fermented by Rhizopus oligosporus 2710 Małgorzata Wronkowska, Wiesław Wiczkowski, Joanna Topolska, Dorota Szawara-Nowak, Mariusz Piskuła, Henryk Zieliński Molecules
Transformation of the formula of fitness ginger based on green buckwheat enriched with rapse protein isolate: a systematic review N. Ruban, A. Kolosova, L. Ryseva, V. Astakhova, D. Polovinkina Proceedings of the Voronezh State University of Engineering Technologies
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.