Search for Author, Title, Keyword
Crossroad of Tradition and Innovation – The Application of Lactic Acid Fermentation to Increase the Nutritional and Health-Promoting Potential of Plant-Based Food Products – a Review
More details
Hide details
Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
Department of Immunology and Food Microbiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
Natalia Drabińska   

Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima, 10-748, Olsztyn, Poland
Submission date: 2021-02-11
Final revision date: 2021-03-11
Acceptance date: 2021-03-15
Lactic acid (LA) fermentation of plant-based products is a commonly used process all over the world. Recently, except for extending the shelf-life of food and improving its palatability, the popularity of fermented food increased because of their nutritional and health-promoting quality. In this review, the existing knowledge about the effects of LA fermentation in different types of plant-based food matrices on their nutritive and health-promoting potential is presented and discussed based on the most recent studies. Furthermore, the toxicological and unfavorable effects are addressed. This review shows that although the biotransformation of several nutrients and bioactive compounds and the strain-dependent properties need more in-depth elucidation in several matrices, the recently published studies proved that LA-fermented cereals, fruits, vegetables, legumes, and seaweeds are good sources of health-promoting molecules. The obtained products offer a good alternative for a growing number of vegans, vegetarians, and flexitarians, who look for the plant-based, healthy alternatives. However, still more clinical trials evaluating the effect of their consumption on the human health are in demand.
Acín Albiac, M., Di Cagno, R., Filannino, P., Cantatore, V., Gobbetti, M. (2020). How fructophilic lactic acid bacteria may reduce the FODMAPs content in wheat-derived baked goods: a proof of concept. Microbial Cell Factories, 19(1), art. no.182.
Adebo, O.A., Kayitesi, E., Njobeh, P.B. (2019). Reduction of mycotoxins during fermentation of whole grain sorghum to whole grain ting (a Southern African food). Toxins, 11(3), art. no. 180.
Adebo, O.A., Njobeh, P.B., Kayitesi, E. (2018). Fermentation by Lactobacillus fermentum strains (singly and in combination) enhances the properties of ting from two whole grain sorghum types. Journal of Cereal Science, 82, 49–56.
Alan, Y., Topalcengiz, Z., Dığrak, M. (2018). Biogenic amine and fermentation metabolite production assessments of Lactobacillus plantarum isolates for naturally fermented pickles. LWT – Food Science and Technology, 98, 322–328.
Ali, N.M., Yeap, S.-K., Yusof, H.M., Beh, B.-K., Ho, W.-Y., Koh, S.-P., Abdullah, M.P., Alitheen, N.B., Long, K. (2016). Comparison of free amino acids, antioxidants, soluble phenolic acids, cytotoxicity and immunomodulation of fermented mung bean and soybean. Journal of the Science of Food and Agriculture, 96(5), 1648–1658.
Allendez, G.N., Alzogaray, M.S.L., Nazareno, M.A., Gupta, C. (2020). Lactic acid fermentation as a tool to enhance the antioxidant properties of Opuntia ficus-indica juice. Indian Journal of Agricultural Biochemistry, 33(1), 20–24.
Anal, A.K., Perpetuini, G., Petchkongkaew, A., Tan, R., Avallone, S., Tofalo, R., Nguyen, H. Van, Chu-Ky, S., Ho, P.H., Phan, T.T., Waché, Y. (2020). Food safety risks in traditional fermented food from South-East Asia. Food Control, 109, art. no. 106922.
Bao, Z., Chi, Y. (2016). In vitro and in vivo assessment of angiotensin-converting enzyme (ACE) inhibitory activity of fermented soybean milk by Lactobacillus casei strains. Current Microbiology, 73(2), 214–219.
Barbu, V., Cotârleț, M., Bolea, C.A., Cantaragiu, A., Andronoiu, D.G., Bahrim, G. E., Enachi, E. (2020). Three types of beetroot products enriched with lactic acid bacteria. Foods (Basel, Switzerland), 9(6), art. no. 786.
Bartkiene, E, Vidmantiene, D., Juodeikiene, G., Viskelis, P., Urbonaviciene, D. (2013). Lactic acid fermentation of tomato: Effects on cis/trans lycopene isomer ratio, β-carotene mass fraction and formation of L(+)- and D(−)-lactic acid. Food Technology and Biotechnology, 51(4), 471–478.
Bartkiene, E., Bartkevics, V., Pugajeva, I., Krungleviciute, V., Mayrhofer, S., Domig, K. (2017). The contribution of P. acidilactici, L. plantarum, and L. curvatus starters and L-(+)-lactic acid to the acrylamide content and quality parameters of mixed rye - wheat bread. LWT – Food Science and Technology, 80, 43–50.
Bartkiene, E., Lele, V., Ruzauskas, M., Domig, K.J., Starkute, V., Zavistanaviciute, P., Bartkevics, V., Pugajeva, I., Klupsaite, D., Juodeikiene, G., Mickiene, R., Rocha, J.M. (2019). Lactic acid bacteria isolation from spontaneous sourdough and their characterization including antimicrobial and antifungal properties evaluation. Microorganisms, 8(1), art. no. 64.
Bautista-Expósito, S., Peñas, E., Silván, J.M., Frias, J., Martínez-Villaluenga, C. (2018). pH-controlled fermentation in mild alkaline conditions enhances bioactive compounds and functional features of lentil to ameliorate metabolic disturbances. Food Chemistry, 248, 262–271.
Ben-Harb, S., Saint-Eve, A., Panouillé, M., Souchon, I., Bonnarme, P., Dugat-Bony, E., Irlinger, F. (2019). Design of microbial consortia for the fermentation of pea-protein-enriched emulsions. International Journal of Food Microbiology, 293, 124–136.
Blajman, J.E., Vinderola, G., Páez, R.B., Signorini, M.L. (2020). The role of homofermentative and heterofermentative lactic acid bacteria for alfalfa silage: a meta-analysis. The Journal of Agricultural Science, 158(1–2), 107–118. 10.1017/S0021859620000386.
Bruhn, A., Brynning, G., Johansen, A., Lindegaard, M.S., Sveigaard, H.H., Aarup, B., Fonager, L., Andersen, L.L., Rasmussen, M.B., Larsen, M.M., Elsser-Gravesen, D., Børsting, M.E. (2019). Fermentation of sugar kelp (Saccharina latissima)—effects on sensory properties, and content of minerals and metals. Journal of Applied Phycology, 31(5), 3175–3187.
Budryn, G., Klewicka, E., Grzelczyk, J., Gałązka-Czarnecka, I., Mostowski, R. (2019). Lactic acid fermentation of legume seed sprouts as a method of increasing the content of isoflavones and reducing microbial contamination. Food Chemistry, 285, 478–484.
Çabuk, B., Nosworthy, M.G., Stone, A.K., Korber, D.R., Tanaka, T., House, J.D., Nickerson, M.T. (2018). Effect of fermentation on the protein digestibility and levels of non-nutritive compounds of pea protein concentrate. Food Technology and Biotechnology, 56(2), 257–264.
Cai, Y.X., Wang, J.H., McAuley, C., Augustin, M.A., Terefe, N.S. (2019). Fermentation for enhancing the bioconversion of glucoraphanin into sulforaphane and improve the functional attributes of broccoli puree. Journal of Functional Foods, 61, art. no. 103461.
Cavallini, D.C.U., Manzoni, M.S.J., Bedani, R., Roselino, M.N., Celiberto, L.S., Vendramini, R.C., de Valdez, G.F., Abdalla, D.S.P., Pinto, R.A., Rosetto, D., Valentini, S.R., Rossi, E.A. (2016). Probiotic soy product supplemented with isoflavones improves the lipid profile of moderately hypercholesterolemic men: a randomized controlled trial. Nutrients, 8(1), art. no. 52.
Chaichian, S., Moazzami, B., Sadoughi, F., Haddad Kashani, H., Zaroudi, M., Asemi, Z. (2020). Functional activities of beta-glucans in the prevention or treatment of cervical cancer. Journal of Ovarian Research, 13(1), art. no. 24.
Champagne, C.P., Green-Johnson, J., Raymond, Y., Barrette, J., Buckley, N. (2009). Selection of probiotic bacteria for the fermentation of a soy beverage in combination with Streptococcus thermophilus. Food Research International, 42(5-6), 612–621.
Champagne, C.P., Tompkins, T.A., Buckley, N.D., Green-Johnson, J.M. (2010). Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beverage. Food Microbiology, 27(7), 968–972.
Charoensiddhi, S., Conlon, M.A., Vuaran, M.S., Franco, C.M.M., Zhang, W. (2016). Impact of extraction processes on prebiotic potential of the brown seaweed Ecklonia radiata by in vitro human gut bacteria fermentation. Journal of Functional Foods, 24, 221–230.
Chen, K., Gao, C., Han, X., Li, D., Wang, H., Lu, F. (2021). Co-fermentation of lentils using lactic acid bacteria and Bacillus subtilis natto increases functional and antioxidant components. Journal of Food Science, 86(2), 475–483.
Chen, Y., Ouyang, X., Laaksonen, O., Liu, X., Shao, Y., Zhao, H., Zhang, B., Zhu, B. (2019). Effect of Lactobacillus acidophilus, Oenococcus oeni, and Lactobacillus brevis on composition of bog bilberry juice. Foods (Basel, Switzerland), 8(10), art. no. 430.
Chiang, S.-S., Pan, T.-M. (2011). Antiosteoporotic effects of Lactobacillus-fermented soy skim milk on bone mineral density and the microstructure of femoral bone in ovariectomized mice. Journal of Agricultural and Food Chemistry, 59(14), 7734–7742.
Chiş, M.S., Păucean, A., Man, S.M., Vodnar, D.C., Teleky, B.-E., Pop, C.R., Stan, L., Borsai, O., Kadar, C.B., Urcan, A.C., Muste, S. (2020). Quinoa sourdough fermented with Lactobacillus plantarum ATCC 8014 designed for gluten-free muffins—a powerful tool to enhance bioactive compounds. Applied Sciences, 10 (20), art. no. 7140.
Chye, F.Y., Ooi, P.W., Ng, S.Y., Sulaiman, M.R. (2018). Fermentation-derived bioactive components from Seaweeds: Functional properties and potential applications. Journal of Aquatic Food Product Technology, 27(2), 144–164.
Cian, R.E., Garzón, A.G., Ancona, D.B., Guerrero, L.C., Drago, S.R. (2016). Chelating properties of peptides from red seaweed Pyropia columbina and its effect on iron bio-accessibility. Plant Foods for Human Nutrition, 71(1), 96–101.
Cirlini, M., Ricci, A., Galaverna, G., Lazzi, C. (2020). Application of lactic acid fermentation to elderberry juice: Changes in acidic and glucidic fractions. LWT – Food Science and Technology, 118, art. no. 108779.
Ciska, E., Drabińska, N., Narwojsz, A., Honke, J. (2016). Stability of glucosinolates and glucosinolate degradation products during storage of boiled white cabbage. Food Chemistry, 203, 340–347.
Ciska, E., Verkerk, R., Honke, J. (2009). Effect of boiling on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3′-diindolylmethane in fermented cabbage. Journal of Agricultural and Food Chemistry, 57(6), 2334–2338.
Conte, P., Fadda, C., Drabińska, N., Krupa-Kozak, U. (2019). Technological and nutritional challenges, and novelty in gluten-free breadmaking: A review. Polish Journal of Food and Nutrition Sciences, 69(1), 5-21.
Corona, G., Coman, M.M., Guo, Y., Hotchkiss, S., Gill, C., Yaqoob, P., Spencer, J. P.E., Rowland, I. (2017). Effect of simulated gastrointestinal digestion and fermentation on polyphenolic content and bioactivity of brown seaweed phlorotannin-rich extracts. Molecular Nutrition and Food Research, 61(11), art. no. 1700223.
Cvetković, D., Ranitović, A., Savić, D., Joković, N., Vidaković, A., Pezo, L., Markov, S. (2019). Survival of wild strains of Lactobacilli during kombucha fermentation and their contribution to functional characteristics of beverage. Polish Journal of Food and Nutrition Sciences, 69(4), 407–415.
Czyżowska, A., Klewicka, E., Libudzisz, Z. (2006). The influence of lactic acid fermentation process of red beet juice on the stability of biologically active colorants. European Food Research and Technology, 223(1), 110–116.
Czyżowska, A., Siemianowska, K., Śniadowska, M., Nowak, A. (2020). Bioactive compounds and microbial quality of stored fermented red beetroots and red beetroot juice. Polish Journal of Food and Nutrition Sciences, 70(1), 35–44.
Da Silva Felício, M.T., Hald, T., Liebana, E., Allende, A., Hugas, M., Nguyen-The, C., Johannessen, G.S., Niskanen, T., Uyttendaele, M., McLauchlin, J. (2015). Risk ranking of pathogens in ready-to-eat unprocessed foods of non-animal origin (FoNAO) in the EU: Initial evaluation using outbreak data (2007–2011). International Journal of Food Microbiology, 195, 9–19.
De Angelis, M., Montemurno, E., Vannini, L., Cosola, C., Cavallo, N., Gozzi, G., Maranzano, V., Di Cagno, R., Gobbetti, M., Gesualdo, L. (2015). Effect of whole-grain barley on the human fecal microbiota and metabolome. Applied and Environmental Microbiology, 81(22), 7945–7956.
de Camargo, A.C., Favero, B.T., Morzelle, M.C., Franchin, M., Alvarez-Parrilla, E., de la Rosa, L.A., Geraldi, M.V., Maróstica Júnior, M.R., Shahidi, F., Schwember, A.R. (2019). Is chickpea a potential substitute for soybean? Phenolic bioactives and potential health benefits. International Journal of Molecular Sciences, 20(11), art. no. 2644.
de la Fuente, B., Luz, C., Puchol, C., Meca, G., Barba, F.J. (2021). Evaluation of fermentation assisted by Lactobacillus brevis POM, and Lactobacillus plantarum (TR-7, TR-71, TR-14) on antioxidant compounds and organic acids of an orange juice-milk based beverage. Food Chemistry, 343, art. no. 128414.
de Oliveira, S.D., Araújo, C.M., Borges, G. da S.C., Lima, M. dos S., Viera, V.B., Garcia, E.F., de Souza, E.L., de Oliveira, M.E.G. (2020). Improvement in physicochemical characteristics, bioactive compounds and antioxidant activity of acerola (Malpighia emarginata D.C.) and guava (Psidium guajava L.) fruit by-products fermented with potentially probiotic lactobacilli. LWT – Food Science and Technology, 134, art. no. 110200.
de Oliveira Silva, F., Lemos, T.C.C., Sandôra, D., Monteiro, M., Perrone, D. (2020). Fermentation of soybean meal improves isoflavone metabolism after soy biscuit consumption by adults. Journal of the Science of Food and Agriculture, 100(7), 2991–2998.
Del Toro-Barbosa, M., Hurtado-Romero, A., Garcia-Amezquita, L.E., García-Cayuela, T. (2020). Psychobiotics: mechanisms of action, evaluation methods and effectiveness in applications with food products. Nutrients, 12(12), art. no. 3896.
Di Cagno, R., Barbato, M., Di Camillo, C., Rizzello, C.G., De Angelis, M., Giuliani, G., De Vincenzi, M., Gobbetti, M., Cucchiara, S. (2010). Gluten-free sourdough wheat baked goods appear safe for young celiac patients: a pilot study. Journal of Pediatric Gastroenterology and Nutrition, 51(6), 777-783. https://doi:10.1097/MPG.0b013e....
Di Cagno, R., Coda, R., De Angelis, M., Gobbetti, M. (2013). Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology, 33(1), 1–10.
Di Cagno, R., Filannino, P., Vincentini, O., Lanera, A., Cavoski, I., Gobbetti, M. (2016). Exploitation of Leuconostoc mesenteroides strains to improve shelf life, rheological, sensory and functional features of prickly pear (Opuntia ficus-indica L.) fruit puree. Food Microbiology, 59, 176–189.
Di Cagno, R., Mazzacane, F., Rizzello, C.G., Vincentini, O., Silano, M., Giuliani, G., De Angelis, M., Gobbetti, M. (2010). Synthesis of isoflavone aglycones and equol in soy milks fermented by food-related lactic acid bacteria and their effect on human intestinal Caco-2 cells. Journal of Agricultural and Food Chemistry, 58(19), 10338–10346.
Donkor, O.N., Shah, N.P. (2008). Production of β-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. Journal of Food Science, 73(1), M15–M20.
Duenas, M., Hernandez, T., Robredo, S., Lamparski, G., Estrella, I., Munoz, R. (2012). Bioactive phenolic compounds of soybean (Glycine max cv. Merit): modifications by different microbiological fermentations. Polish Journal of Food and Nutrition Sciences, 62(4), 241–250.
Egounlety, M., Aworh, O.C. (2003). Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). Journal of Food Engineering, 56(2-3), 249–254.
El Khoury, D., Cuda, C., Luhovyy, B.L., Anderson, G.H. (2012). Beta glucan: health benefits in obesity and metabolic syndrome. Journal of Nutrition and Metabolism, 2012, art. no. 851362.
Esteban-Torres, M., Landete, J.M., Reverón, I., Santamaría, L., de las Rivas, B., Muñoz, R. (2015). A Lactobacillus plantarum esterase active on a broad range of phenolic esters. Applied and Environmental Microbiology, 81(9), 3235–3242.
FAO. (1991). Protein quality evaluation: report of the joint FAO/WHO expert consultation. Food and Nutrition Paper, 92.
Farnworth, E.R., Mainville, I., Desjardins, M.-P., Gardner, N., Fliss, I., Champagne, C. (2007). Growth of probiotic bacteria and bifidobacteria in a soy yogurt formulation. International Journal of Food Microbiology, 116(1), 174–181.
FeptideDB: Web application for new bioactive peptides from food protein. www.
Filannino, P., Azzi, L., Cavoski, I., Vincentini, O., Rizzello, C.G., Gobbetti, M., Di Cagno, R. (2013). Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica granatum L.) juice through lactic acid fermentation. International Journal of Food Microbiology, 163(2-3), 184–192.
Filannino, P., Bai, Y., Di Cagno, R., Gobbetti, M., Gänzle, M.G. (2015). Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiology, 46, 272–279.
Filannino, P., Gobbetti, M., De Angelis, M., Di Cagno, R. (2014). Hydroxycinnamic acids used as external acceptors of electrons: an energetic advantage for strictly heterofermentative lactic acid bacteria. Applied and Environmental Microbiology, 80(24), 7574–7582.
Fitzgerald, C., Aluko, R.E., Hossain, M., Rai, D.K., Hayes, M. (2014). Potential of a renin inhibitory peptide from the red seaweed Palmaria palmata as a functional food ingredient following confirmation and characterization of a hypotensive effect in spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry, 62(33), 8352–8356.
Frias, J., Song, Y.S., Martínez-Villaluenga, C., De Mejia, E.G., Vidal-Valverde, C. (2008). Immunoreactivity and amino acid content of fermented soybean products. Journal of Agricultural and Food Chemistry, 56(1), 99–105.
Fu, W., Rao, H., Tian, Y., Xue, W. (2020). Bacterial composition in sourdoughs from different regions in China and the microbial potential to reduce wheat allergens. LWT – Food Science and Technology, 117, art. no. 108669.
Garai, G., Dueñas, M.T., Irastorza, A., Moreno-Arribas, M.V. (2007). Biogenic amine production by lactic acid bacteria isolated from cider. Letters in Applied Microbiology, 45(5), 473–478.
Garcia, C., Guerin, M., Souidi, K., Remize, F. (2020). Lactic fermented fruit or vegetable juices: past, present and future. Beverages, 6(1), art. no. 8.
Garcia, E.F., de Oliveira Araújo, A., Luciano, W.A., de Albuquerque, T.M.R., de Oliveira Arcanjo, N.M., Madruga, M.S., dos Santos Lima, M., Magnani, M., Saarela, M., de Souza, E.L. (2018). The performance of five fruit-derived and freeze-dried potentially probiotic Lactobacillus strains in apple, orange, and grape juices. Journal of the Science of Food and Agriculture, 98(13), 5000–5010.
Garzón, A.G., Van de Velde, F., Drago, S.R. (2020). Gastrointestinal and colonic in vitro bioaccessibility of γ-aminobutiric acid (GABA) and phenolic compounds from novel fermented sorghum food. LWT – Food Science and Technology, 130, art. no. 109664.
Gibbs, B.F., Zougman, A., Masse, R., Mulligan, C. (2004). Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Research International, 37(2), 123–131.
Goodman R.E. (2020). AllergenOnline vesion 20, www:
Guiné, R.P.F., Barroca, M.J., Coldea, T.E., Bartkiene, E., Anjos, O. (2021). Apple fermented products: an overview of technology, properties and health effects. Processes, 9(2), art. no. 223.
Guldiken, B., Toydemir, G., Nur Memis, K., Okur, S., Boyacioglu, D., Capanoglu, E. (2016). Home-processed red beetroot (Beta vulgaris L.) products: changes in antioxidant properties and bioaccessibility. International Journal of Molecular Sciences, 17(6), art. no. 858.
Gupta, S., Abu-Ghannam, N. (2011). Bioactive potential and possible health effects of edible brown seaweeds. Trends in Food Science and Technology, 22(6), 315–326.
Gupta, S., Abu-Ghannam, N. (2012). Probiotic fermentation of plant based products: possibilities and opportunities. Critical Reviews in Food Science and Nutrition, 52(2), 183–199.
Habler, K., Hofer, K., Geißinger, C., Schüler, J., Hückelhoven, R., Hess, M., Gastl, M., Rychlik, M. (2016). Fate of Fusarium toxins during the malting process. Journal of Agricultural and Food Chemistry, 64(6), 1377–1384.
Hallmann, E., Kazimierczak, R., Marszałek, K., Drela, N., Kiernozek, E., Toomik, P., Matt, D., Luik, A., Rembiałkowska, E. (2017). The nutritive value of organic and conventional white cabbage (Brassica Oleracea L. Var. Capitata) and anti-apoptotic activity in gastric adenocarcinoma cells of sauerkraut juice produced therof. Journal of Agricultural and Food Chemistry, 65(37), 8171–8183.
Hermann, M. (2009). The impact of the European Novel Food Regulation on trade and food innovation based on traditional plant foods from developing countries. Food Policy, 34(6), 499–507.
Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C., Sanders, M.E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514.
Hu, Y., Li, Y., Liu, X. (2020). Soybean peptides promote yoghurt fermentation and quality. Biotechnology Letters, 42(10), 1927–1937.
Huang, F., Hong, R., Zhang, R., Dong, L., Bai, Y., Liu, L., Jia, X., Wang, G., Zhang, M. (2019). Dynamic variation in biochemical properties and prebiotic activities of polysaccharides from longan pulp during fermentation process. International Journal of Biological Macromolecules, 132, 915–921.
Huang, X., Schuppan, D., Rojas Tovar, L.E., Zevallos, V.F., Loponen, J., Gänzle, M. (2020). Sourdough fermentation degrades wheat alpha-amylase/trypsin inhibitor (ATI) and reduces pro-inflammatory activity. Foods (Basel, Switzerland), 9(7), art. no. 943.
Hubert, J., Berger, M., Nepveu, F., Paul, F., Daydé, J. (2008). Effects of fermentation on the phytochemical composition and antioxidant properties of soy germ. Food Chemistry, 109(4), 709–721.
Hussain, M.A., Knight, M.I., Britz, M.L. (2009). Proteomic analysis of lactose-starved Lactobacillus casei during stationary growth phase. Journal of Applied Microbiology, 106(3), 764–773.
Inomata, N., Miyakawa, M., Aihara, M. (2018). Surfing as a risk factor for sensitization to poly(γ-glutamic acid) in fermented soybeans, natto, allergy. Allergology International, 67(3), 341–346.
Isas, A.S., Mariotti Celis, M.S., Pérez Correa, J.R., Fuentes, E., Rodríguez, L., Palomo, I., Mozzi, F., Van Nieuwenhove, C. (2020). Functional fermented cherimoya (Annona cherimola Mill.) juice using autochthonous lactic acid bacteria. Food Research International, 138, art. no. 109729.
Jakubczyk, A., Karaś, M., Złotek, U., Szymanowska, U. (2017). Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food Research International, 100, 489–496.
Jung, W.Y., Jung, J.Y., Lee, H.J., Jeon, C.O. (2016). Functional characterization of bacterial communities responsible for fermentation of doenjang: a traditional korean fermented soybean paste. Frontiers in Microbiology, 7, art. no. 827.
Juodeikiene, G., Bartkiene, E., Cernauskas, D., Cizeikiene, D., Zadeike, D., Lele, V., Bartkevics, V. (2018). Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. LWT – Food Science and Technology, 89, 307–314.
Kapusta-Duch, J., Kusznierewicz, B., Leszczyńska, T., Borczak, B. (2017). Effect of package type on selected parameters of nutritional quality of chill-stored white sauerkraut. Polish Journal of Food and Nutrition Sciences, 67(2), 137–144.
Khan, I., Kang, S.C. (2017). Apoptotic activity of Lactobacillus plantarum DGK-17-fermented soybean seed extract in human colon cancer cells via ROS–JNK signaling pathway. Journal of Food Science, 82(6), 1475–1483.
Kheterpaul, N., Chauhan, B.M. (1991). Effect of natural fermentation on phytate and polyphenolic content and in-vitro digestibility of starch and protein of pearl millet (Pennisetum typhoideum). Journal of the Science of Food and Agriculture, 55(2), 189–195.
Klewicka, E., Czyżowska, A. (2011). Biological stability of lacto-fermented beetroot juice during refrigerated storage. Polish Journal of Food and Nutrition Sciences, 61(4), 251–256.
Kun, S., Rezessy-Szabó, J.M., Nguyen, Q.D., Hoschke, Á. (2008). Changes of microbial population and some components in carrot juice during fermentation with selected Bifidobacterium strains. Process Biochemistry, 43(8), 816–821.
Kwaw, E., Ma, Y., Tchabo, W., Apaliya, M.T., Wu, M., Sackey, A.S., Xiao, L., Tahir, H.E. (2018). Effect of Lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chemistry, 250, 148–154.
Kwon, Y.S., Lee, S., Lee, S.H., Kim, H.J., Lee, C.H. (2019). Comparative evaluation of six traditional fermented soybean products in east asia: a metabolomics approach. Metabolites, 9(9), art. no. 183.
Laatikainen, R., Koskenpato, J., Hongisto, S.-M., Loponen, J., Poussa, T., Hillilä, M., Korpela, R. (2016). Randomised clinical trial: low-FODMAP rye bread vs. regular rye bread to relieve the symptoms of irritable bowel syndrome. Alimentary Pharmacology & Therapeutics, 44(5), 460–470.
Laatikainen, R., Koskenpato, J., Hongisto, S.-M., Loponen, J., Poussa, T., Huang, X., Sontag-Strohm, T., Salmenkari, H., Korpela, R. (2017). Pilot study: comparison of sourdough wheat bread and yeast-fermented wheat bread in individuals with wheat sensitivity and irritable bowel syndrome. Nutrients, 9(11), art. no. 1215.
Ladero, V., Coton, M., Fernández, M., Buron, N., Martín, M. C., Guichard, H., Coton, E., Alvarez, M.A. (2011). Biogenic amines content in Spanish and French natural ciders: Application of qPCR for quantitative detection of biogenic amine-producers. Food Microbiology, 28(3), 554–561.
Lee, J.H., Kim, B., Hwang, C.E., Haque, M.A., Kim, S.C., Lee, C.S., Kang, S.S., Cho, K.M., Lee, D.H. (2018). Changes in conjugated linoleic acid and isoflavone contents from fermented soymilks using Lactobacillus plantarum P1201 and screening for their digestive enzyme inhibition and antioxidant properties. Journal of Functional Foods, 43, 17–28.
Lee, S.M., Lee, J.Y., Cho, Y.J., Kim, M.S., Kim, Y.-S. (2018). Determination of volatiles and carotenoid degradation compounds in red pepper fermented by Lactobacillus parabuchneri. Journal of Food Science, 83(8), 2083–2091.
Lee, W., Ahn, G., Lee, B.-J., Wijesinghe, W.A.J.P., Kim, D., Yang, H., Kim, Y.M., Park, S.J., Jee, Y., Jeon, Y.-J. (2013). Radio-protective effect of polysaccharides isolated from Lactobacillus brevis-fermented Ecklonia cava. International Journal of Biological Macromolecules, 52, 260–266.
Lee, Y.-C., Kung, H.-F., Huang, Y.-L., Wu, C.-H., Huang, Y.-R., Tsai, Y.-H. (2016). Reduction of biogenic amines during miso fermentation by Lactobacillus plantarum as a starter culture. Journal of Food Protection, 79(9), 1556–1561.
Li, C., Li, W., Chen, X., Feng, M., Rui, X., Jiang, M., Dong, M. (2014). Microbiological, physicochemical and rheological properties of fermented soymilk produced with exopolysaccharide (EPS) producing lactic acid bacteria strains. LWT - Food Science and Technology, 57(2), 477–485.
Liang, J., Han, B.-Z., Nout, M.J.R., Hamer, R.J. (2008). Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chemistry, 110(4), 821–828.
Licandro, H., Ho, P.H., Nguyen, T.K.C., Petchkongkaew, A., Nguyen, H. Van, Chu-Ky, S., Nguyen, T.V.A., Lorn, D., Waché, Y. (2020). How fermentation by lactic acid bacteria can address safety issues in legumes food products? Food Control, 110, art. no. 106957.
Limón, R.I., Peñas, E., Torino, M.I., Martínez-Villaluenga, C., Dueñas, M., Frias, J. (2015). Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chemistry, 172, 343–352.
Liu, J., Zhou, J., Wang, L., Ma, Z., Zhao, G., Ge, Z., Zhu, H., Qiao, J. (2017). Improving nitrogen source utilization from defatted soybean meal for nisin production by enhancing proteolytic function of Lactococcus lactis F44. Scientific Reports, 7(1), art. no. 6189.
Mæhre, H.K., Malde, M.K., Eilertsen, K.E., Elvevoll, E.O. (2014). Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. Journal of the Science of Food and Agriculture, 94(15), 3281–3290.
Magishi, N., Yuikawa, N., Kobayashi, M., Taniuchi, S. (2017). Degradation and removal of soybean allergen in Japanese soy sauce. Molecular Medicine Reports, 16(2), 2264–2268.
Mah, J.-H., Park, Y.K., Jin, Y.H., Lee, J.-H., Hwang, H.-J. (2019). Bacterial production and control of biogenic amines in Asian fermented soybean foods. Foods (Basel, Switzerland), 8(2), art. no. 85.
Marco, M.L., Heeney, D., Binda, S., Cifelli, C.J., Cotter, P.D., Foligné, B., Gänzle, M., Kort, R., Pasin, G., Pihlanto, A., Smid, E.J., Hutkins, R. (2017). Health benefits of fermented foods: microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102.
María Landete, J., Hernández, T., Robredo, S., Dueñas, M., de las Rivas, B., Estrella, I., Muñoz, R. (2015). Effect of soaking and fermentation on content of phenolic compounds of soybean (Glycine max cv. Merit) and mung beans (Vigna radiata [L] Wilczek). International Journal of Food Sciences and Nutrition, 66(2), 203–209.
Markkinen, N., Laaksonen, O., Nahku, R., Kuldjärv, R., Yang, B. (2019). Impact of lactic acid fermentation on acids, sugars, and phenolic compounds in black chokeberry and sea buckthorn juices. Food Chemistry, 286, 204–215.
Martinez-Villaluenga, C., Peñas, E., Frias, J., Ciska, E., Honke, J., Piskula, M.K., Kozlowska, H., Vidal-Valverde, C. (2009). Influence of fermentation conditions on glucosinolates, ascorbigen, and ascorbic acid content in white cabbage (Brassica oleracea var. capitata cv. Taler) cultivated in different seasons. Journal of Food Science, 74(1), C62–C67.
Martins, E.M.F., Ramos, A.M., Vanzela, E.S.L., Stringheta, P.C., de Oliveira Pinto, C.L., Martins, J.M. (2013). Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Research International, 51(2), 764–770.
Matejčeková, Z., Mikulajová, A., Vlková, E., Liptáková, D., Mošovská, S., Hybenová, E., Valík, Ľ. (2019). Design of bacterial cultures in fermented functional maize product formulation. Polish Journal of Food and Nutrition Sciences, 69(4), 417–426.
Meléndez-Martínez, A.J. (2019). An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Molecular Nutrition & Food Research, 63(15), art. no. 1801045.
Mihhalevski, A., Nisamedtinov, I., Hälvin, K., Ošeka, A., Paalme, T. (2013). Stability of B-complex vitamins and dietary fiber during rye sourdough bread production. Journal of Cereal Science, 57(1), 30–38.
Minervini, F., De Angelis, M., Di Cagno, R., Gobbetti, M. (2014). Ecological parameters influencing microbial diversity and stability of traditional sourdough. International Journal of Food Microbiology, 171, 136–146.
Mo, H., Kariluoto, S., Piironen, V., Zhu, Y., Sanders, M.G., Vincken, J.-P., Wolkers-Rooijackers, J., Nout, M.J.R. (2013). Effect of soybean processing on content and bioaccessibility of folate, vitamin B12 and isoflavones in tofu and tempe. Food Chemistry, 141(3), 2418–2425.
Moon, S.H., Kim, C.R., Chang, H.C. (2018). Heterofermentative lactic acid bacteria as a starter culture to control kimchi fermentation. LWT – Food Science and Technology, 88, 181–188.
Mullaney, J.A., Kelly, W.J., McGhie, T.K., Ansell, J., Heyes, J.A. (2013). Lactic acid bacteria convert glucosinolates to nitriles efficiently yet differently from Enterobacteriaceae. Journal of Agricultural and Food Chemistry, 61(12), 3039–3046.
Mustafa, S.M., Chua, L.S., El-Enshasy, H.A. (2019). Effects of agitation speed and kinetic studies on probiotication of pomegranate juice with Lactobacillus casei. Molecules (Basel, Switzerland), 24(13), art. no. 2357.
Nachi, I., Fhoula, I., Smida, I., Ben Taher, I., Chouaibi, M., Jaunbergs, J., Bartkevics, V., Hassouna, M. (2018). Assessment of lactic acid bacteria application for the reduction of acrylamide formation in bread. LWT – Food Science and Technology, 92, 435–441.
Nasiri E.B., Kadivar, M., Shahedi, M., Soleimanian-Zad, S. (2017). Reduction of acrylamide in whole-wheat bread by combining lactobacilli and yeast fermentation. Food Additives & Contaminants: Part A, 34(11), 1904–1914.
Nawaz, K.A.A., David, S.M., Murugesh, E., Thandeeswaran, M., Kiran, K.G., Mahendran, R., Palaniswamy, M., Angayarkanni, J. (2017). Identification and in silico characterization of a novel peptide inhibitor of angiotensin converting enzyme from pigeon pea (Cajanus cajan). Phytomedicine, 36, 1–7.
Nguyen, T.T.T., Loiseau, G., Icard-Vernière, C., Rochette, I., Trèche, S., Guyot, J.-P. (2007). Effect of fermentation by amylolytic lactic acid bacteria, in process combinations, on characteristics of rice/soybean slurries: A new method for preparing high energy density complementary foods for young children. Food Chemistry, 100(2), 623–631.
Oloo, B.O., Shitandi, A., Mahungu, S., Malinga, J.B., Rose, O.B. (2014). Effects of lactic acid fermentation on the retention of beta-carotene content in orange fleshed sweet potatoes. International Journal of Food Studies, 3(1), 13–33.
Omoba, O.S., Isah, L.R. (2018). Influence of sourdough fermentation on amino acids composition, phenolic profile, and antioxidant properties of sorghum biscuits. Preventive Nutrition and Food Science, 23(3), 220–227.
Palani, K., Harbaum-Piayda, B., Meske, D., Keppler, J.K., Bockelmann, W., Heller, K.J., Schwarz, K. (2016). Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut. Food Chemistry, 190, 755–762.
Palla, M., Cristani, C., Giovannetti, M., Agnolucci, M. (2017). Identification and characterization of lactic acid bacteria and yeasts of PDO Tuscan bread sourdough by culture dependent and independent methods. International Journal of Food Microbiology, 250, 19–26.
Pan, R., Xu, T., Bai, J., Xia, S., Liu, Q., Li, J., Xiao, X., Dong, Y. (2020). Effect of Lactobacillus plantarum fermented barley on plasma glycolipids and insulin sensitivity in subjects with metabolic syndrome. Journal of Food Biochemistry, 44(11), art. no. e13471.
Paramithiotis, S., Doulgeraki, A.I., Tsilikidis, I., Nychas, G.-J.E., Drosinos, E.H. (2012). Fate of Listeria monocytogenes and Salmonella Typhimurium during spontaneous cauliflower fermentation. Food Control, 27(1), 178–183.
Pejcz, E., Czaja, A., Wojciechowicz-Budzisz, A., Gil, Z., Spychaj, R. (2017). The potential of naked barley sourdough to improve the quality and dietary fibre content of barley enriched wheat bread. Journal of Cereal Science, 77, 97–101.
Pejcz, E., Spychaj, R., Gil, Z. (2020). Technological methods for reducing the content of fructan in rye bread. European Food Research and Technology, 246(9), 1839–1846.
Pepper, S.J., Britz, M.L. (2019). An acid up-regulated surface protein of Lactobacillus paracasei Strain GCRL 46 is phylogenetically related to the secreted glucan- (gpbb) and immunoglobulin-binding (siba) protein of pathogenic streptococci. International Journal of Molecular Sciences, 20(7), art. no. 1610.
Pereira, H.S., Leão-Ferreira, L.R., Moussatché, N., Teixeira, V.L., Cavalcanti, D.N., Costa, L.J., Diaz, R., Frugulhetti, I.C.P.P. (2004). Antiviral activity of diterpenes isolated from the Brazilian marine alga Dictyota menstrualis against human immunodeficiency virus type 1 (HIV-1). Antiviral Research, 64(1), 69–76.
Pereira, L., Critchley, A.T. (2020). The COVID 19 novel coronavirus pandemic 2020: seaweeds to the rescue? Why does substantial, supporting research about the antiviral properties of seaweed polysaccharides seem to go unrecognized by the pharmaceutical community in these desperate times? Journal of Applied Phycology, 32(3), 1875–1877.
Petkova, M., Stefanova, P., Gotcheva, V., Kuzmanova, I., Angelov, A. (2020). Microbiological and physicochemical characterization of traditional Bulgarian sourdoughs and screening of lactic acid bacteria for amylolytic activity. Journal of Chemical Technology and Metallurgy, 55(5), 921–934.
Pistarino, E., Aliakbarian, B., Casazza, A.A., Paini, M., Cosulich, M.E., Perego, P. (2013). Combined effect of starter culture and temperature on phenolic compounds during fermentation of Taggiasca black olives. Food Chemistry, 138(2-3), 2043–2049.
Quirante-Moya, S., García-Ibañez, P., Quirante-Moya, F., Villaño, D., Moreno, D. A. (2020). The role of brassica bioactives on human health: are we studying it the right way? Molecules (Basel, Switzerland), 25(7), art. no. 1591.
Ramnani, P., Chitarrari, R., Tuohy, K., Grant, J., Hotchkiss, S., Philp, K., Campbell, R., Gill, C., Rowland, I. (2012). In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds. Anaerobe, 18(1), 1–6.
Rathore, S., Salmerón, I., Pandiella, S.S. (2012). Production of potentially probiotic beverages using single and mixed cereal substrates fermented with lactic acid bacteria cultures. Food Microbiology, 30(1), 239–244.
Rekha, C.R., Vijayalakshmi, G. (2010). Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. Journal of Applied Microbiology, 109(4), 1198–1208.
Rianingsih, L., Sumardianto (2020). Antioxidant activity in seaweed (Sargassum sp.) extract fermented with Lactobacillus plantarum and Lactobacillus acidophilus. Earth and Environmental Science, 530, art. no. 012011.
Ricci, A., Cirlini, M., Calani, L., Bernini, V., Neviani, E., Del Rio, D., Galaverna, G., Lazzi, C. (2019). In vitro metabolism of elderberry juice polyphenols by lactic acid bacteria. Food Chemistry, 276, 692–699.
Rodríguez-Jasso, R.M., Mussatto, S.I., Sepúlveda, L., Agrasar, A.T., Pastrana, L., Aguilar, C.N., Teixeira, J.A. (2013). Fungal fucoidanase production by solid-state fermentation in a rotating drum bioreactor using algal biomass as substrate. Food and Bioproducts Processing, 91(4), 587–594.
Salmerón, I., Thomas, K., Pandiella, S.S. (2015). Effect of potentially probiotic lactic acid bacteria on the physicochemical composition and acceptance of fermented cereal beverages. Journal of Functional Foods, 15, 106–115.
Samtiya, M., Aluko, R.E., Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production, Processing and Nutrition, 2(1), art. no. 6.
Sanjukta, S., Rai, A.K. (2016). Production of bioactive peptides during soybean fermentation and their potential health benefit. Trends in Food Science & Technology, 50, 1–10.
Santamaría, L., Reverón, I., de Felipe, F.L., de las Rivas, B., Muñoz, R. (2018). Ethylphenol formation by Lactobacillus plantarum: Identification of the enzyme involved in the reduction of vinylphenols. Applied and Environmental Microbiology, 84(17), art. no. e01064-18.
Santamaría, L., Reverón, I., López de Felipe, F., de las Rivas, B., Muñoz, R. (2018). Unravelling the reduction pathway as an alternative metabolic route to hydroxycinnamate decarboxylation in Lactobacillus plantarum. Applied and Environmental Microbiology, 84(15), art. no. e01123-18.
Santos, C.C.A. do A., Libeck, B. da S., Schwan, R.F. (2014). Co-culture fermentation of peanut-soy milk for the development of a novel functional beverage. International Journal of Food Microbiology, 186, 32–41.
Seo, H.S., Lee, S., Singh, D., Shin, H.W., Cho, S.A., Lee, C.H. (2018). Untargeted metabolite profiling for koji-fermentative bioprocess unravels the effects of varying substrate types and microbial inocula. Food Chemistry, 266, 161–169.
Shobharani, P., Halami, P.M., Sachindra, N.M. (2013). Potential of marine lactic acid bacteria to ferment Sargassum sp. for enhanced anticoagulant and antioxidant properties. Journal of Applied Microbiology, 114(1), 96–107.
Singh, R.S., Thakur, S.R., Bansal, P. (2015). Algal lectins as promising biomolecules for biomedical research. Critical Reviews in Microbiology, 41(1), 77–88.
Song, J.L., Choi, J.H., Seo, J.H., Lim, Y.I., Park, K.Y. (2014). Anti-colitic effects of kanjangs (fermented soy sauce and sesame sauce) in dextran sulfate sodium-induced colitis in mice. Journal of Medicinal Food, 17(9), 1027–1035.
Soundararajan, P., Kim, J.S. (2018). Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules, 23(11), art no. 2983.
Spaggiari, M., Ricci, A., Calani, L., Bresciani, L., Neviani, E., Dall’Asta, C., Lazzi, C., Galaverna, G. (2020). Solid state lactic acid fermentation: A strategy to improve wheat bran functionality. LWT – Food Science and Technology, 118, art. no. 108668.
Starzyńska–Janiszewska, A., Stodolak, B. (2011). Effect of inoculated lactic acid fermentation on antinutritional and antiradical properties of grass pea (Lathyrus sativus ‘Krab’) flour. Polish Journal of Food and Nutrition Sciences, 61(4), 245–249.
Stefańska, I., Piasecka-Jóźwiak, K., Kotyrba, D., Kolenda, M., Stecka, K.M. (2016). Selection of lactic acid bacteria strains for the hydrolysis of allergenic proteins of wheat flour. Journal of the Science of Food and Agriculture, 96(11), 3897–3905.
Su, L.-W., Cheng, Y.-H., Hsiao, F.S.-H., Han, J.-C., Yu, Y.-H. (2018). Optimization of mixed solid-state fermentation of soybean meal by Lactobacillus species and Clostridium butyricum. Polish Journal of Microbiology, 67(3), 297–305.
Tabaszewska, M., Gabor, A., Jaworska, G., Drożdż, I. (2018). Effect of fermentation and storage on the nutritional value and contents of biologically-active compounds in lacto-fermented white asparagus (Asparagus officinalis L.). LWT – Food Science and Technology, 92, 67–72.
Thomas, I., Siew, L.Q.C., Watts, T.J., Haque, R. (2019). Seaweed allergy. Journal of Allergy and Clinical Immunology: In Practice, 7(2), 714–715.
Toi, M., Hirota, S., Tomotaki, A., Sato, N., Hozumi, Y., Anan, K., Nagashima, T., Tokuda, Y., Masuda, N., Ohsumi, S., Ohno, S., Takahashi, M., Hayashi, H., Yamamoto, S., Ohashi, Y. (2013). Probiotic beverage with soy isoflavone consumption for breast cancer prevention: a case-control study. Current Nutrition and Food Science, 9(3), 194–200.
Toktaş, B., Bildik, F., Özçelik, B. (2018). Effect of fermentation on anthocyanin stability and in vitro bioaccessibility during shalgam (şalgam) beverage production. Journal of the Science of Food and Agriculture, 98(8), 3066–3075.
Tong, L.-T., Zhong, K., Liu, L., Zhou, X., Qiu, J., Zhou, S. (2015). Effects of dietary hull-less barley β-glucan on the cholesterol metabolism of hypercholesterolemic hamsters. Food Chemistry, 169, 344–349.
Torres-Pitarch, A., Gardiner, G.E., Cormican, P., Rea, M., Crispie, F., O’Doherty, J.V., Cozannet, P., Ryan, T., Cullen, J., Lawlor, P.G. (2020). Effect of cereal fermentation and carbohydrase supplementation on growth, nutrient digestibility and intestinal microbiota in liquid-fed grow-finishing pigs. Scientific Reports, 10(1), art. no. 13716.
Unlu, N.Z., Bohn, T., Francis, D.M., Nagaraja, H.N., Clinton, S.K., Schwartz, S.J. (2007). Lycopene from heat-induced cis-isomer-rich tomato sauce is more bioavailable than from all-trans-rich tomato sauce in human subjects. British Journal of Nutrition, 98(1), 140–146. 10.1017/S0007114507685201.
Uyttendaele, M., Jaykus, L.-A., Amoah, P., Chiodini, A., Cunliffe, D., Jacxsens, L., Holvoet, K., Korsten, L., Lau, M., McClure, P., Medema, G., Sampers, I., Rao Jasti, P. (2015). Microbial hazards in irrigation water: standards, norms, and testing to manage use of water in fresh produce primary production. Comprehensive Reviews in Food Science and Food Safety, 14(4), 336–356.
Van Beeck, W., Verschueren, C., Wuyts, S., van den Broek, M.F.L., Uyttendaele, M., Lebeer, S. (2020). Robustness of fermented carrot juice against Listeria monocytogenes, Salmonella Typhimurium and Escherichia coli O157:H7. International Journal of Food Microbiology, 335, art. no. 108854.
Vasiee, A., Falah, F., Behbahani, B.A., Tabatabaee-Yazdi, F. (2020). Probiotic characterization of Pediococcus strains isolated from Iranian cereal-dairy fermented product: Interaction with pathogenic bacteria and the enteric cell line Caco-2. Journal of Bioscience and Bioengineering, 130(5), 471–479.
Vauzour, D., Rodriguez-Mateos, A., Corona, G., Oruna-Concha, M.J., Spencer, J.P.E. (2010). Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients, 2(11), 1106–1131.
Verni, M., Demarinis, C., Rizzello, C.G., Baruzzi, F. (2020). Design and characterization of a novel fermented beverage from lentil grains. Foods, 9(7), art. no. 893.
Verni, M., Rizzello, C.G., Coda, R. (2019). Fermentation biotechnology applied to cereal industry by-products: nutritional and functional insights. Frontiers in Nutrition, (6), art. no. 42.
Verón, H.E., Gauffin Cano, P., Fabersani, E., Sanz, Y., Isla, M.I., Fernández Espinar, M.T., Gil Ponce, J.V., Torres, S. (2019). Cactus pear (Opuntia ficus-indica) juice fermented with autochthonous Lactobacillus plantarum S-811. Food & Function, 10(2), 1085–1097.
Wacoo, A.P., Mukisa, I.M., Meeme, R., Byakika, S., Wendiro, D., Sybesma, W., Kort, R. (2019). Probiotic enrichment and reduction of aflatoxins in a traditional African maize-based fermented food. Nutrients, 11(2), art. no. 265.
Wang, J., Zhao, X., Tian, Z., He, C., Yang, Y., Yang, Z. (2015). Isolation and characterization of exopolysaccharide-producing Lactobacillus plantarum SKT109 from Tibet kefir. Polish Journal of Food and Nutrition Sciences, 65(4), 269–279.
Wiczkowski, W., Szawara-Nowak, D., Romaszko, J. (2016). The impact of red cabbage fermentation on bioavailability of anthocyanins and antioxidant capacity of human plasma. Food Chemistry, 190, 730–740.
Wiczkowski, W., Szawara-Nowak, D., Topolska, J. (2015). Changes in the content and composition of anthocyanins in red cabbage and its antioxidant capacity during fermentation, storage and stewing. Food Chemistry, 167, 115–123.
Wronkowska, M., Jeliński, T., Majkowska, A., Zieliński, H. (2018). Physical properties of buckwheat water biscuits formulated from fermented flours by selected lactic acid bacteria. Polish Journal of Food and Nutrition Sciences, 68(1), 25–31.
Xia, J., Zu, Q., Yang, A., Wu, Z., Li, X., Tong, P., Yuan, J., Wu, Y., Fan, Q., Chen, H. (2019). Allergenicity reduction and rheology property of Lactobacillus-fermented soymilk. Journal of the Science of Food and Agriculture, 99(15), 6841–6849.
Xiao, X., Tan, C., Sun, X., Zhao, Y., Zhang, J., Zhu, Y., Bai, J., Dong, Y., Zhou, X. (2020). Effects of fermentation on structural characteristics and in vitro physiological activities of barley β-glucan. Carbohydrate Polymers, 231, art. no. 115685.
Xiao, Y., Zhang, S., Tong, H., Shi, S. (2018). Comprehensive evaluation of the role of soy and isoflavone supplementation in humans and animals over the past two decades. Phytotherapy Research, 32(3), 384–394.
Xu, Y., Coda, R., Shi, Q., Tuomainen, P., Katina, K., Tenkanen, M. (2017). Exopolysaccharides production during the fermentation of soybean and fava bean flours by Leuconostoc mesenteroides DSM 20343. Journal of Agricultural and Food Chemistry, 65(13), 2805–2815.
Xu, Y., Zhou, T., Tang, H., Li, X., Chen, Y., Zhang, L., Zhang, J. (2020). Probiotic potential and amylolytic properties of lactic acid bacteria isolated from Chinese fermented cereal foods. Food Control, 111, art. no. 107057.
Yagmur, G., Tanguler, H., Leventdurur, S., Elmaci, S.B., Turhan, E.U., Francesca, N., Settanni, L., Moschetti, G., Erten, H. (2016). Identification of predominant lactic acid bacteria and yeasts of turkish sourdoughs and selection of starter cultures for liquid sourdough production using different flours and dough yields. Polish Journal of Food and Nutrition Sciences, 66(2), 99–107.
Yang, A., Zuo, L., Cheng, Y., Wu, Z., Li, X., Tong, P., Chen, H. (2018). Degradation of major allergens and allergenicity reduction of soybean meal through solid-state fermentation with microorganisms. Food and Function, 9(3), 1899–1909.
Yang, J., Ji, Y., Park, H., Lee, J., Park, S., Yeo, S., Shin, H., Holzapfel, W.H. (2014). Selection of functional lactic acid bacteria as starter cultures for the fermentation of Korean leek (Allium tuberosum Rottler ex Sprengel.). International Journal of Food Microbiology, 191, 164–171.
Ye, J.-H., Huang, L.-Y., Terefe, N.S., Augustin, M.A. (2019). Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria. Food Chemistry, 286, 616–623.
Zadeike, D., Vaitkeviciene, R., Bartkevics, V., Bogdanova, E., Bartkiene, E., Lele, V., Juodeikiene, G., Cernauskas, D., Valatkeviciene, Z. (2021). The expedient application of microbial fermentation after whole-wheat milling and fractionation to mitigate mycotoxins in wheat-based products. LWT – Food Science and Technology, 137, art. no. 110440.
Zaunmüller, T., Eichert, M., Richter, H., Unden, G. (2006). Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Applied Microbiology and Biotechnology, 72(3), 421–429.
Zhang, Z., Fan, S., Huang, D., Xiong, T., Nie, S., Xie, M. (2020). Polysaccharides from fermented Asparagus officinalis with Lactobacillus plantarum NCU116 alleviated liver injury via modulation of glutathione homeostasis, bile acid metabolism, and SCFA production. Food & Function, 11(9), 7681–7695.
Zheng, J., Wittouck, S., Salvetti, E., Franz, C.M.A.P., Harris, H.M.B., Mattarelli, P., O’Toole, P.W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G.E., Gänzle, M.G., Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782–2858.
Zheng, X.-F., Yang, Z., Zhang, H., Jin, W.-X., Xu, C.-W., Gao, L., Rao, S.-Q., Jiao, X. (2020). Isolation of virulent phages infecting dominant mesophilic aerobic bacteria in cucumber pickle fermentation. Food Microbiology, 86, art. no. 103330.
Zhou, C., Li, J., Mao, K., Gao, J., Li, X., Zhi, T., Sang, Y. (2019). Anti-hangover and anti-hypertensive effects in vitro of fermented persimmon juice. CyTA - Journal of Food, 17(1), 960–966.
Zhou, Y., Wang, R., Zhang, Y., Yang, Y., Sun, X., Zhang, Q., Yang, N. (2020). Biotransformation of phenolics and metabolites and the change in antioxidant activity in kiwifruit induced by Lactobacillus plantarum fermentation. Journal of the Science of Food and Agriculture, 100(8), 3283–3290.
Zieliński, H., Honke, J., Topolska, J., Bączek, N., Piskuła, M.K., Wiczkowski, W., Wronkowska, M. (2020). ACE inhibitory properties and phenolics profile of fermented flours and of baked and digested biscuits from buckwheat. Foods, 9(7), art. no. 847.
Zieliński, H., Szawara-Nowak, D., Wronkowska, M. (2020). Bioaccessibility of anti-AGEs activity, antioxidant capacity and phenolics from water biscuits prepared from fermented buckwheat flours. LWT – Food Science and Technology, 123, art. no. 109051.