Search for Author, Title, Keyword
Effect of Dry Heat Puffing on Nutritional Composition, Fatty Acid, Amino Acid and Phenolic Profiles of Pseudocereals Grains
 
More details
Hide details
 
Publication date: 2018-12-31
 
 
Pol. J. Food Nutr. Sci. 2018;68(4):289-297
 
KEYWORDS
ABSTRACT
The impact of puffing on nutritional composition and phenolic profiles of kiwicha (Amaranthus caudatus L.) and quinoa (Chenopodium quinoa Willd.) was investigated. Popped kiwicha showed increased protein and lipid contents and lower contents of carbohydrates compared to the untreated grains. Higher lipid, ash and carbohydrates contents and a decreased protein content were observed after puffing of quinoa. Fatty acid profile and ω-6/ω-3 ratio was not affected by puffing, although it was observed a healthier ratio in quinoa (7:1) compared to kiwicha (65:1). Thermal treatment reduced essential amino acid contents and protein quality of both grains, although amino acids content remained adequate according to FAO/WHO requirements for adults. Puffing decreased hydroxybenzoic and hydroxycinnamic acids content of both pseudocereals. Flavonoid levels were negatively affected by puffing in kiwicha while a noticeable increase was observed in popped quinoa. In summary, puffing of kiwicha and quinoa grains is an alternative processing method to obtain expanded products or precooked flours of adequate nutritional value.
 
REFERENCES (49)
1.
Adler A.I., Boyko E.J., Schraer C.D., Murphy, N.J., Lower prevalence of impaired glucose tolerance and diabetes associated with daily seal oil or salmon consumption among Alaska Natives. Diabetes Care, 1994, 17, 1498-1501.
 
2.
Alvarez-Jubete L., Wijngaard H.E., Arendt K., Gallagher E., Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chem., 2010, 119, 770-778.
 
3.
Amare E., Mouquet-Rivier C., Rochette I., Adish A., Haki G.D., Effect of popping and fermentation on proximate composition, minerals and absorption inhibitors, and mineral bioavailability of Amaranthus caudatus grain cultivated in Ethiopia. J. Food Sci. Tech. Mysore, 2016, 3, 2987–2994.
 
4.
AOAC. Fatty acids in oils and fats, preparation of methyl esters. Official Method 969.33. in: Official Methods of Analysis 15th ed., 1990, AOAC International, Arlington, Arlington, Virginia.
 
5.
AOAC. Official Methods of Analysis of AOAC International, 18th ed. 2005, AOAC International, Gaithersburg, MD, USA.
 
6.
Arena S., Renzone G., D´Ambrosio C., Salzano A.M., Scaloni A., Dairy products and the Maillard reaction: A promising future for extensive food characterization by integrated proteomics studies. Food Chem., 2017, 219, 477-489.
 
7.
Barba de la Rosa A.P., Fomsgaard I., Laursen B., Mortensen A.G., Olvera-Martinez L., Silva-Sánchez C., Mendoza-Herrera A., González-Castañeda J., De León-Rodríguez A. Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: Phenolic acids and flavonoids with potential impact on its nutraceutical quality. J. Cereal Sci., 2009, 49, 117-121.
 
8.
Barros L., Dueñas M., Carvalho A.M., Ferreira I.C.F.R., Santos-Buelga C., Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food Chem. Toxicol., 2012, 50, 1576-1582.
 
9.
Barros L., Dueñas M., Dias M.I., Sousa M.J., Santos-Buelga C., Ferreira, I.C.F.R. Phenolic profiles of cultivated, in vitro cultured and commercial samples of Melissa officinalis L. infusion. Food Chem., 2013, 136, 1-8.
 
10.
Block R.J., Mitchel H.H. The correlation of the amino acid composition of protein with their nutritive value. Nutr. Abstracts Rev., 1946, 16, 249-278.
 
11.
Chaires-Martinez L., Perez-Vargas M.A., Cantor del Angel A.I., Cruz-Bermudez F., Jiménez-Avalos H.A., Total phenolic content and antioxidant capacity of germinated, popped and cooked Huauzontle (Chenopodium berlandieri spp. nuttalliae) seeds. Cereal Chem., 2013, 90, 263-268.
 
12.
Crisan E.V., Sands A., Nutritional value. 1978, in: The Biology and Cultivation of Edible Mushrooms (eds. S.T. Chang, W.A. Hayes). Academic Press, New York, pp. 137-165.
 
13.
de la Barca A.M.C., Rojas-Martínez M.E., Islas-Rubio A.R., Cabrera-Chávez F. Gluten-Free breads and cookies of raw and popped amaranth flours with attractive technological and nutritional qualities. Plant Foods Human Nutr., 2010, 65, 241-246.
 
14.
Dueñas M., Pérez-Alonso J.J., Santos-Buelga C., Escribano-Bailón M.T., Anthocyanin composition in fig (Ficus carica L.). J. Food Comp. Anal., 2008, 21, 107–115.
 
15.
FAO. 2011. Quinoa: an ancient crop to contribute to world food security. Available from: [http://www.fao.org/docrep/017/...]. Accessed 2016 August 25th.
 
16.
Gamel T.H., Linssen J.P., Alink G.M., Mossallem A.S., Shekib L.A., Nutritional study of raw and popped seed proteins of Amaranthus caudatus L. and Amaranthus cruentus L. J. Sci. Food Agric., 2004, 84, 1153-1158.
 
17.
Gamel T.H., Linssen J.P., Mesallam A.S., Damir A.A., Shekib L.A., Seed treatments affect functional and antinutritional properties of amaranth flours. J. Sci. Food Agric., 2006, 86, 1095-1102.
 
18.
Gamel T.H., Linssen J.P.H. Flavor compounds of popped amaranth seed. J. Food Process. Preserv., 2008,32, 656-668.
 
19.
Gómez-Caravaca A.M., Segura-Carretero A., Fernández-Gutíerrez A., Caboni M.F., Simultaneous determination of phenolic compounds and saponins in Quinoa (Chenopodium quinoa Willd) by a liquid chromatography-diode array detection-electrospray ionization-time of flight mass spectrometry methodology. J. Agric. Food Chem., 2011, 59, 10815-10825.
 
20.
Hoke K., Houška M., Průchová J., Gabrovská D., Vaculová K., Paulíčková I. Optimisation of puffing naked barley. J. Food Eng., 80, 2007, 1016-1022.
 
21.
Ihekoronye A.I. 1981. A rapid enzymatic and chromatographic predictive model for the in vivo rat based protein efficiency ratio (PhD thesis). University of Missouri, Columbia.
 
22.
Klimczak M., Malecka M., Pacholek B., Antioxidant activity of ethanolic extracts of amaranth seeds. Nahrung - Food, 2002, 46, 184–186.
 
23.
Kromann N., Green A., Epidemiological studies in the Upernavik district, Greenland. Incidence of some chronic diseases 1950–1974. Acta Med. Scand., 1980, 208, 401–406.
 
24.
Kromhout D., de Goede J., Update on cardiometabolic health effects of ω-3 fatty acids. Curr. Opin. Lipidol., 2014, 25, 85–90.
 
25.
Lamothe L.M., Srichuwong S., Reuhs B.L., Hamaker B.R., Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chem., 2015, 167, 490–496.
 
26.
Martinez-Villaluenga C., Torres A., Frias J., Vidal-Valverde C., Semolina supplementation with processed lupin and pigeon pea flours improves protein quality of pasta. LWT - Food Sci. Technol., 2010, 43, 617-622.
 
27.
Mota C., Nascimento A.C., Santos M., Delgado I., Coelho I., Rego A., Matos A.S., Torres D., Castanheira I., The effect of cooking methods on the mineral content of quinoa (Chenopodium quinoa), amaranth (Amaranthus sp.) and buckwheat (Fagopyrum esculentum). J. Food Comp. Anal., 2016, 49, 57-64.
 
28.
Mota C., Santos M., Mauro R., Samman N., Matos A.S., Torres D., Castanheira I., Protein content and amino acids profile of pseudocereals. Food Chem., 2016, 193, 55-61.
 
29.
Murakami T., Yutani A., Yamano T., Iyota H., Konishi Y., Effects of popping on nutrient contents of amaranth seed. Plant Foods Hum. Nutr., 2014, 69, 25–29.
 
30.
Muyonga J.H., Andabati B., Ssepuuya G., Effect of heat processing on selected grain amaranth physicochemical properties. Food Sci. Nutr., 2014, 2, 9-16.
 
31.
Nascimento A.C., Mota C., Coelho I., Gueifão S., Santos M., Matos A.S., Lobo M., Samman N., Castanheira I., Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: Proximates, minerals and trace elements. Food Chem., 2014, 148, 420-426.
 
32.
Ogrodowska D., Czaplicki S., Zadernowski R., Mattila P., Hellstrom J., Naczk M., Phenolic acids in seeds and products obtained from Amaranthus cruentus. J. Food Nutr. Res., 2012, 51, 96-101.
 
33.
Oser, B.L., An integrated essential amino acid index for predicting the biological value of proteins. 1959, in: Protein and Amino Acids in Nutrition (ed. A.A. Albanese). Academic Press, New York, pp. 281-291.
 
34.
Pasko P., Gdula-Argainska J., Podporska-Carroll J., Quilty B., Wietecha-Posluszny R., Tyszka-Czochara M., Zagrodzki P., Influence of selenium supplementation of fatty acids profile and biological activity of four edible amaranth sprouts as new kind of functional food. J. Food Sci. Technol. Mysore, 2015, 52, 4724-4736.
 
35.
Paucar-Menacho L.M., Peñas E., Dueñas M., Frias J., Martinez-Villaluenga C., Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT - Food Sci. Technol., 2017, 76, SI, 245-252.
 
36.
Peiretti P.G., Gai F., Tassone S., Fatty acid profile and nutritive value of quinoa (Chenopodium quinoa Willd.) seeds and plants at different growth stages. Anim. Feed Sci. Tech., 2013, 183, 56–61.
 
37.
Pisariková B., Kracmar S., Herzig I., Amino acid contents and biological value of protein in various amaranth species. Czech J. Anim. Sci., 2005, 50, 169-174.
 
38.
Repo-Carrasco R., Espinoza C., Jacobsen S-E., Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Rev. Int., 2003, 19, 179–189.
 
39.
Rocchetti G., Lucini L., Chiodelli G., Giuberti G., Montesano D., Masoero F., Trevisan M. Impact of boiling on free and bound phenolic profile and antioxidant activity of commercial gluten-free pasta. Food Res. Int., 2017, 100, 69-77.
 
40.
Ruales J., Nair B.M., Nutritional quality of the protein in quinoa (Chenopodium quinoa Willd.) seeds. Plant Foods Hum. Nutr., 1992, 42, 1-11.
 
41.
Schraer C.D., Risica P.M., Ebbesson S.O., Go O.T., Howard B.V., Mayer A.M., Low fasting insulin levels in Eskimos compared to American Indians: are Eskimos less insulin resistant? Int. J. Circum. Health, 1999, 58, 272–280.
 
42.
Simopoulos A.P., The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med., 2008, 233, 674–688.
 
43.
Song A., Eckhoff S.R., Optimum popping moisture content for popcorn kernels of different sizes. Cereal Chem., 1994, 71, 458-460.
 
44.
Tang Y., Li X., Chen P.X., Zhang B., Hernandez M., Zhang H., Marcone, M.F., Liu, R., Tsao R., Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem., 2015, 174, 502–508.
 
45.
Tang Y., Li X., Chen P.X., Zhang B., Liu R., Hernandez M., Marcone, M.F., Tsao, R., Assessing the fatty acid, carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. J. Agric. Food Chem., 2016, 64, 1103-1110.
 
46.
Taylor J., Belton P., Beta T., Duodu K., Increasing the utilisation of sorghum, millets and pseudocereals: Developments in the science of their phenolic phytochemicals, biofortification and protein functionality. J. Cereal Sci., 2014, 59, 257-275.
 
47.
USDA. National nutrient database for standard reference. United States Department of Agriculture. 2016. Press Release 28.
 
48.
Yablokov V.A., Smel’tsova I.L., Faerman, V.I., Thermal stability of amino acids. Russ. J. Gen. Chem., 2013, 83, 476-480.
 
49.
Zapotoczny P., Markowski M., Majewska K., Ratajski A., Konopko H., Effect of temperature on the physical, functional, and mechanical characteristics of hot-air-puffed amaranth seeds. J. Food Eng., 2006, 76, 469-476.
 
 
CITATIONS (30):
1.
The Probable Use of Genus amaranthus as Feed Material for Monogastric Animals
Tlou Manyelo, Nthabiseng Sebola, Rensburg van, Monnye Mabelebele
Animals
 
2.
Antioxidant Activity and Phenolic Composition of Amaranth (Amaranthus caudatus) during Plant Growth
Magdalena Karamać, Francesco Gai, Erica Longato, Giorgia Meineri, Michał Janiak, Ryszard Amarowicz, Pier Peiretti
Antioxidants
 
3.
Effect of popping on physicochemical, technological, antioxidant, and microstructural properties of makhana seed
Mridula Devi, Kalyani Sharma, Shyam Jha, Simran Arora, Shadanan Patel, Yogesh Kumar, Rajesh Vishwakarma
Journal of Food Processing and Preservation
 
4.
Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods
Cristina Martínez-Villaluenga, Elena Peñas, Blanca Hernández-Ledesma
Food and Chemical Toxicology
 
5.
Structural prope rties, functional evaluation, and in vitro protein digestibility of black and yellow quinoa (Chenopodium petiolare) protein isolates
Aidee Sánchez-Reséndiz, Anayansi Escalante-Aburto, Vidalina Andía-Ayme, Cristina Chuck-Hernández
CyTA - Journal of Food
 
6.
Characterization of the Phenolic Compounds in Different Plant Parts of Amaranthus cruentus Grown under Cultivated Conditions
Tlou Manyelo, Nthabiseng Sebola, Zahra Hassan, Monnye Mabelebele
Molecules
 
7.
Characterization of Quinoa Seeds Milling Fractions and Their Effect on the Rheological Properties of Wheat Flour Dough
Ionica Coțovanu, Ana Batariuc, Silvia Mironeasa
Applied Sciences
 
8.
Innovative Processing Technologies for Healthy Grains
Muriel Henrion, Emilie Labat, Lisa Lamothe
 
9.
Functional Components and Anti-Nutritional Factors in Gluten-Free Grains: A Focus on Quinoa Seeds
Valentina Melini, Francesca Melini
Foods
 
10.
Effect of heat treatment on the structure and digestion properties of oat globulin
Ting He, Jing Wang, Xinzhong Hu
Cereal Chemistry
 
11.
Effect of pre-treatment and oil popping conditions on quinoa popping quality
S. Deepak, M.S. Shivaswamy, T. Sharmila, M. Maheswari
Acta Alimentaria
 
12.
Effects of “nine steaming nine sun-drying” on proximate composition, protein structure and volatile compounds of black soybeans
Xianyan Liao, Shanshan Wang, Yingqiu Li, Olajide Michael, Xiaolin Zhai, Jiana Qian, Song Miao, Junyi Huang
Food Research International
 
13.
The Evaluation of Amino Acid Profiles in Gluten-Free Mini Sponge Cakes Fortified with Broccoli By-Product
Natalia Drabińska
Separations
 
14.
Pseudocereals [Working Title]
Padamnabhi Nagar, Riya Engineer, Krishna Rajput
 
15.
Improving Nutritional and Health Benefits of Biscuits by Optimizing Formulations Based on Sprouted Pseudocereal Grains
Luz Paucar-Menacho, Wilson Simpalo-López, Williams Castillo-Martínez, Lourdes Esquivel-Paredes, Cristina Martínez-Villaluenga
Foods
 
16.
Diversity of quinoa genetic resources for sustainable production: A survey on nutritive characteristics as influenced by environmental conditions
Cepková Hlásná, Lucie Dostalíková, Iva Viehmannová, Michal Jágr, Dagmar Janovská
Frontiers in Sustainable Food Systems
 
17.
The Effects of Processing Technologies on Nutritional and Anti-nutritional Properties of Pseudocereals and Minor Cereal
Rubén Agregán, Nihal Guzel, Mustafa Guzel, Sneh Bangar, Gökhan Zengin, Manoj Kumar, José Lorenzo
Food and Bioprocess Technology
 
18.
An overview of the nutritional profile, processing technologies, and health benefits of quinoa with an emphasis on impacts of processing
Chang Liu, Rongrong Ma, Yaoqi Tian
Critical Reviews in Food Science and Nutrition
 
19.
Functionality and Application of Colored Cereals
Olalere Abayomi, Chee-Yuen Gan, Muhammad Shafie, Hamoud Alenezi, Abiola Taiwo, Fawale Olumide
 
20.
Influence of Drought and Heat Stress on Mineral Content, Antioxidant Activity and Bioactive Compound Accumulation in Four African Amaranthus Species
Mmbulaheni Netshimbupfe, Jacques Berner, Der Van, Olakunle Oladimeji, Chrisna Gouws
Plants
 
21.
Peruvian Amaranth (kiwicha) Accumulates Higher Levels of the Unsaturated Linoleic Acid
Adnan Kanbar, Julia Beisel, Meylin Gutierrez, Simone Graeff-Hönninger, Peter Nick
International Journal of Molecular Sciences
 
22.
Developing Sustainable and Health Promoting Cereals and Pseudocereals
Elena Peñas, Irene Tomé-Sánchez, Cristina Martínez-Villaluenga
 
23.
Impact of steaming and roasting heat-treatment on physico-chemical, functional and digestibility of walnut kernel
Xiaoyan Zhao, Xiangrui Ren, Hongkai Liu, Xiaowei Zhang, Meng Wang, Haifang Hu
 
24.
Nutritional Composition, Functionality, and Processing Technologies for Amaranth
Manisha Malik, Ritu Sindhu, Sanju Dhull, Christelle Bou-Mitri, Yudhbir Singh, Shreya Panwar, Bhupendar Khatkar, Ivan Luzardo-Ocampo
Journal of Food Processing and Preservation
 
25.
Effect of Stir-Frying on Physicochemical and Functional Properties of Oat Protein Isolates
Xia Wang, Yang Lei, Hamad Rafique, Liang Zou, Xinzhong Hu
Foods
 
26.
Differentiating the nutrient composition, in-vitro starch digestibility, individual polyphenols and anti-oxidant properties of raw and popped makhana (Euryale ferox)
Kumar Mahesh, Giridhar Goudar, Paras Sharma, Rajesh Vishwakarma, Pallabika Gogoi, Anwesha Mahajan, Anilkumar Chandragiri, Subhash Kalpuri, Geddam Babu, Challa Suresh, Madhusudhana Chary, G. Venketrajireddy, M. Radhika, P. Sreenu, B. Tulja
Journal of Food Measurement and Characterization
 
27.
Harvesting Food from Weeds
Nisha Singhania, Rajesh Kumar, Pramila, Sunil Bishnoi, Aradhita Ray, Aastha Diwan
 
28.
Modifying the particle density of cocoa powder using puffing method for sustainable consumption and production
G Supriyanto, S Achadiyah, B Rahardjo, T Suparyanto, J Trinugroho, B Pardamean
IOP Conference Series: Earth and Environmental Science
 
29.
Impact of steaming and roasting heat‐treatment on physico‐chemical and functional properties of walnut kernel
Xiaoyan Zhao, Xiangrui Ren, Hongkai Liu, Xiaowei Zhang, Meng Wang, Haifang Hu
Journal of the American Oil Chemists' Society
 
30.
Sustainable Protein Sources
D.K. Santra, R. Schoenlechner, D.M. Brenner
 
eISSN:2083-6007
ISSN:1230-0322
Journals System - logo
Scroll to top