Search for Author, Title, Keyword
Effect of Extrusion on the Functional Properties and Bioactive Compounds of Tamarind (Tamarindus indica L.) Shell
More details
Hide details
Programa Institucional de Maestría en Ciencias Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Mich., México
Laboratorio de Investigación y Desarrollo Farmacéutico (LIDF) and Laboratorio de Ingeniería y Biotecnología de los Alimentos (LIBA), Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Olímpica, C.P. 44430 Guadalajara, Jal., México
Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan 173. Col. Matamoros, C.P. 58240, Morelia, Mich., México
Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Cerro Blanco 141, Colinas del Cimatario, CP 76090, Santiago de Querétaro, Qro., México
Facultad de Química, Universidad Autónoma de Querétaro, C.U. Cerro de las Campanas, C.P. 76010, Santiago de Querétaro, Qro, México
Facultad de Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo, Santiago Tapia 403, Col. Centro, CP 58000, Morelia, Mich., México
Submission date: 2023-04-02
Acceptance date: 2023-08-08
Online publication date: 2023-08-31
Publication date: 2023-08-31
Corresponding author
Hector Eduardo Martinez-Flores   

Facultad de Quimico Farmacobiologia, Universidad Michoacana de San Nicolas de Hidalgo, Tzintzuntzan 173. Col. Matamoros., 58240, Morelia, Mexico
Pol. J. Food Nutr. Sci. 2023;73(3):278–288
The food-use of the tamarind (Tamarindus indica L.) fruit produces shell and seeds as by-products. In this work, the effects of the tamarind shell moisture content and the temperature of their extrusion on the dietary fiber content and physiochemical properties, such as water absorption capacity (WAC), oil absorption capacity (OAC), and glucose dialysis retardation index (GDRI) of the extrudates, were estimated. Moreover, the effects of the extrusion variables on the total phenolic and total flavonoid contents and on the antioxidant capacity of the tamarind shell were evaluated. The dry powdered tamarind shell was conditioned to have 32 or 39 g of water per 100 g of shell, prior to being subjected to extrusion. Subsequently, the conditioned samples were processed at 90°C, 100°C and 110°C in a single screw extruder. A non-extruded tamarind shell was taken as a control. The extrusion resulted in a 138.3% increase in the soluble dietary fiber content, along with 40.3% and 18.4% reductions of total phenolic and total flavonoid contents, respectively. The antioxidant capacity of the tamarind shell with moisture content of 32 g/100 g extruded at 100°C and 110°C was similar to that of non-extruded material. Moreover, the extruded products had the higher OAC compared to that of the control and they displayed an excellent response with regard to controlling the GDRI. The extrusion advantageously modified properties of the tamarind shell particularly when material with a moisture content of 32 g/100 g at 100°C was processed.
ABTS•+, radical cation of 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); ANOVA, analysis of variance; DPPH•, 2,2-diphenyl-1-picrylhydrazyl radical; FTIR, Fourier transform infrared spectroscopy; GAE, gallic acid equivalents; GDRI, glucose dialysis retard index; IDF, insoluble dietary fiber; OAC, oil absorption capacity; SEM, scanning electron microscopy; RE, rutin equivalents; SDF, soluble dietary fiber; TDF, total dietary fiber; WAC, water absorption capacity.
The student Dalia Samanta Aguilar Ávila thanks CONACyT for the scholarship granted during her master's studies.
The study received no external funding.
The authors declare that they have no competing interests.
AACC. 2000. American Association of Cereal Chemists. Approved Methods. 10th edition. Edited by the AACC. Minneapolis, MN, USA.
Abah, C.R., Ishiwu, C.N., Obiegbuna, J.E., Oladejo, A.A. (2020). Nutritional composition, functional properties and food applications of millet grains. Asian Food Science Journal, 14(2), 9–19.
Abdulmajid, A., Hamidon, T.S., Rahim, A.A., Hussin, M.H. (2019). Tamarind shell tannin extracts as green corrosion inhibitors of mild steel in hydrochloric acid medium. Materials Research Express, 6(10), art. no. 106579.
Adiotomre, J., Eastwood, M.A., Edwards, C., Brydon, W.G. (1990). Dietary fiber: in vitro methods that anticipate nutrition and metabolic activity in humans. The American Journal of Clinical Nutrition, 52(1), 128-134.
Anderson, R.A., Conway, H.F., Pfeifer, V.F., Griffin, E.L. (1969). Roll and extrusion-cooking of grain sorghum grits. Cereal Science Today, 14(11), 371-381.
Anirudhan, T.S., Radhakrishnan, P.G., Suchithra, P.S. (2008). Adsorptive removal of mercury (II) ions from water and wastewater by polymerized tamarind fruit shell. Separation Science and Technology, 43(13), 3522–3544.
ANSI/ASTM. (1977). Standard test methods for alpha-cellulose in wood D 1103-60. American National Standard Institute, Washington DC.
Arribas, C., Cabellos, B., Cuadrado, C., Guillamón, E., Pedrosa, M.M. (2019). Extrusion effect on proximate composition, starch and dietary fibre of ready-to-eat products based on rice fortified with carob fruit and bean. LWT – Food Science and Technology, 111, 387–393.
Arribas, C., Cabellos, B., Sánchez, C., Cuadrado, C., Guillamón, E., Pedrosa, M.M. (2017). The impact of extrusion on the nutritional composition, dietary fiber and in vitro digestibility of gluten-free snacks based on rice, pea and carob flour blends. Food & Function, 8(10), 3654–3663.
Arroyo, S.Y., Carrasco, C.M., Bueno, L.A., Cardeña, C., Luízar, O.C. (2008). Obtención y caracterización fisicoquímica y funcional de las fibras dietéticas del níspero común (Mesillas germánica). Revista de la Sociedad Química del Perú, 74(4), 269–281 (in Spanish; English abstract).
Bader Ul Ain, H., Saeed, F., Ahmed, A., Asif Khan, M., Niaz, B., Tufail, T. (2019). Improving the physicochemical properties of partially enhanced soluble dietary fiber through innovative techniques: A coherent review. Journal of Food Processing and Preservation, 43(4), art. no. e13917.
Barak, S., Mudgil, D. (2014). Locust bean gum: Processing, properties and food applications – A review. International Journal of Biological Macromolecules, 66, 74–80.
Benítez, V., Rebollo-Hernanz, M., Braojos, C., Cañas, S., Gil-Ramírez, A., Aguilera, Y., Martín-Cabrejas, M.A. (2023). Changes in the cocoa shell dietary fiber and phenolic compounds after extrusion determine its functional and physiological properties. Current Research in Food Science, 6, art. no. 100516.
Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology, 28(1), 25–30.
Brennan, C., Brennan, M., Derbyshire, E., Tiwari, B.K. (2011). Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends in Food Science and Technology, 22(10), 570–575.
Carré, M.H., Haynes, D. (1922). The estimation of pectin as calcium pectate and the application of this method to the determination of the soluble pectin in apples. Biochemistry Journal, 16(1), 60–69.
Chen, H., Zhao, C., Li, J., Hussain, S., Yan, S., Wang, Q. (2018). Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root. LWT – Food and Science Technology, 93, 204–211.
Chimsah, G.F.A., Nyarko, G., Abubakari, A.-H. (2020). A review of explored uses and study of nutritional potential of tamarind (Tamarindus indica L.) in Northern. African Journal of Food Science, 14(9), 285–294.
De Caluwé, E., Halamová, K., Van Damme, P. (2010). Tamarindus indica L. – A review of traditional uses, phytochemistry and pharmacology. Afrika Focus, 23(1), 53–83.
Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., Attia, H. (2011). Dietary fibre and fibre-rich by products of food processing: Characterisation, technological functionality and commercial applications: a review. Food Chemistry, 124(2), 411–421.
Gan, J., Xie, L., Peng, G., Xie, J., Chen, Y., Yu, Q. (2021). Systematic review on modification methods of dietary fiber. Food Hydrocolloids, 19, art. no. 106872.
Garcia-Amezquita, L.E., Tejada-Ortigoza, V., Serna-Saldivar, S.O., Welti-Chanes, J. (2018). Dietary fiber concentrates from fruit and vegetable by-products: processing, modification, and application as functional ingredients. Food and Bioprocess Technology, 11(2), 1439–1463.
Gustafson, C.R., Rose, D.J. (2022). US consumer identification of the health benefits of dietary fiber and consideration of fiber when making food choices. Nutrients, 14(11), art. no. 2341.
Huang, Y.L., Ma, Y.S., Tsai, Y.H., Chang, S.K. (2019). In vitro hypoglycemic, cholesterol-lowering and fermentation capacities of fiber-rich orange pomace as affected by extrusion. International Journal of Biological Macromolecules, 124, 796–801.
Kesselly, S.R., Mugabi, R., Byaruhanga, Y. (2022). Effect of extrusion on the functional and pasting properties of high-quality cassava flour (HQCF). Journal of Food Research, 11(4), 1–12.
Khan, G.M., Khan, N.M., Khan, Z.U., Ali, F., Jan, A.K., Muhammad, N., Elahi, R. (2018). Effect of extraction methods on structural, physiochemical and functional properties of dietary fiber from defatted walnut flour. Food Science and Biotechnology, 27, 1015–1022.
Kumar, N, Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, art. no. e00370.
Larrea Céspedes, M.A., Martínez-Bustos, F., Chang, Y.K. (2010). The effect of extruded orange pulp on enzymatic hydrolysis of starch and glucose retardation index. Food and Bioprocess Technology, 3, 684–692.
Lemes, A.C., Buranelo, E.M., Gonçalves de O.F.J., Gautério, G.V., Bernardo Días, R.B., Zarur, C.M.A. (2022). Biological approaches for extraction of bioactive compounds from agro-industrial by-products: A review. Frontiers in Bioengineering and Biotechnology, 9, art. no. 802543.
Li, L., Liu, J., Zhang, Y., Wang, Q., Wang, J. (2022). Qualitative and quantitative correlation of microstructural properties and in vitro glucose adsorption and diffusion behaviors of pea insoluble dietary fiber induced by ultrafine grinding. Foods, 11(18), art. no. 2814.
Liu, J., Wang, T., Huang, B., Zhuang, Y., Hu, Y., Fei, P. (2021). Pectin modified with phenolic acids: Evaluation of their emulsification properties, antioxidation activities, and antibacterial activities. International Journal of Biological Macromolecules, 174, 485–493.
Liu, L., Kerr, W.L., Kong, F., Dee, D.R., Lin, M. (2018). Influence of nano-fibrillated cellulose (NFC) on starch digestion and glucose absorption. Carbohydrate Polymers, 196, 146–153.
Maheswari, C.U., Guduri, B.R., Rajulu, A.V. (2008). Properties of lignocellulose tamarind fruit fibers. Journal of Applied Polymer Science, 110(4), 1986–1989.
Mahungu, S.M., Diaz-Mercado, S., Li, J., Schwenk, M., Singletary, K., Faller, J. (1999). Stability of isoflavones during extraction processing of corn/soy mixture. Journal of Agricultural and Food Chemistry, 47(1), 279–284.
Martínez-Flores, H.E., Maya-Cortés, D.C., Figueroa-Cárdenas, J.D., Garnica-Romo, M.G., Ponce-Saavedra, J. (2009). Chemical composition and physicochemical properties of shiitake mushroom and high fiber products. CyTA-Journal of Food, 7(1), 7–14.
Menis-Henrique, M.E.C., Scarton, M., Piran, M.V.F., Clerici, M.T.P.S. (2020). Cereal fiber: Extrusion modifications for food industry. Current Opinion in Food Science, 33, 141–148.
Mudgil, D. (2018). Influence of partially hydrolyzed guar gum as soluble fiber on physicochemical, textural and sensory characteristics of yoghurt. The Journal of Microbiology, Biotechnology and Food Sciences, 8(2), 794-797.
Oomah, B.D., Cardador-Martínez, A., Loarca-Piña, G. (2005). Phenolics and antioxidative activities in common beans (Phaseolus vulgaris L). Journal of the Science of Food and Agriculture, 85(6), 935–942.
Ou, S., Kwok, K., Li, Y., Fu, L. (2001). In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. Journal of Agriculture and Food Chemistry, 49(2), 1026–1029.
Prosky, L., Asp, N.G., Scheweizer, T.F., Furda, I. (1988). Determination of insoluble, soluble, and total dietary fiber in food and products: Interlaboratory study. Journal- Association of Official Analytical Chemists, 71(5), 1017–1023.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231–1237.
Reguengo, L.M., Kawata, S.M., Sivieri, K., Maróstica, J.M.R. (2022). Agro-industrial by-products: Valuable sources of bioactive compounds. Food Research International, 152, art. no. 110871.
Runkel, R.O.H., Wilke, K.D. (1951). Zur Kenntnis des thermoplastischen Verhaltens von Holz. Holz Roh Werkstoff, 9, 260–270 (in German).
Saha, P., Chowdhury, S., Gupta, S., Kumar, I., Kumar, R. (2010). Assessment on the removal of malachite green using tamarind fruit shell as biosorbent. CLEAN – Soil, Air, Water, 38(5–6), 437-455.
Sharma, P., Gujral, H.S., Singh, B. (2012). Antioxidant activity of barley as affected by extrusion. Food Chemistry, 131(4), 1406–1413.
Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.
Sivam, A.S., Sun-Waterhouse, D., Perera, C.O., Waterhouse, G.I.N. (2011). Application of FT-IR and Raman spectroscopy for the study of biopolymers in breads fortified with fibre and polyphenols. Food Research International, 50(2), 574–585.
Sivasankar, V., Rajkumar, S., Murugesh, S., Darchen, A. (2012). Tamarind (Tamarindus indica) fruit shell carbon: a calcium-rich promising adsorbent for fluoride removal from groundwater. Journal of Hazardous Materials, 225–226, 164–172.
Stojceska, V., Ainsworth, P., Plunkett, A., Ibanoglu, S. (2010). The advantage of using extrusion processing for increasing dietary fibre level in gluten-free products. Food Chemistry, 121(1), 156–164.
Ujjinappa, S., Sreepathi, L.K. (2018). Production and quality testing of fuel briquettes made from pongamia and tamarind shell. Sādhanā, 43, art. no. 58.
Wise, L.E., Maxine M, D’Addieco, A.A. (1946). Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal, 122, 35–43.
Yusuf, K., Saha, S., Umar, S. (2022). Health benefits of dietary fiber for the management of inflammatory bowel disease. Biomedicines, 10(6), art. no. 1242.
Zhang, M., Bai, X., Zhang, Z. (2011). Extrusion process improves the functionality of soluble dietary fiber in oat bran. Journal of Cereal Science, 54(1), 98-103.
Zhong, L., Fang, Z., Wahlqvist, M. L., Hodgson, J.M., Johnson, S.K. (2019). Extrusion cooking increases soluble dietary fibre of lupin seed coat. LWT – Food Science and Technology, 99, 547–554.
Zhuang, Z., Chen, M., Niu, J., Qu, N., Ji, B., Duan, X., Liu, Z., Liu, X., Wang, Y., Zhao, B. (2019). The manufacturing process of kiwifruit fruit powder with high dietary fiber and its laxative effect. Molecules, 24(21), art. no. 3813.