Search for Author, Title, Keyword
Extraction, Chemical Composition and Antidiabetic Potential of Crude Polysaccharides from Centella asiatica (L.) Urban
More details
Hide details
Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
College of Horticulture, Xinyang Agriculture and Forestry University, China
College of Horticulture, Hainan University, Haikou, Hainan 570228, China
Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN Putra Nilai, Nilai 71800, Malaysia
ENIAC, Centro Universitario de Excelencia. R. Força Pública, 89, Centro Guarulhos-SP 07012-030, Brazil
Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
Innovation Center for Confectionary Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Submission date: 2024-02-18
Acceptance date: 2024-05-06
Online publication date: 2024-05-24
Publication date: 2024-05-24
Corresponding author
Babul Airianah Othman   

Faculty of science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
Pol. J. Food Nutr. Sci. 2024;74(2):177-187
The global prevalence of diabetes mellitus (DM) is escalating, posing a significant challenge to human healthcare systems. In the present study, mineral and monosaccharide compositions, and antidiabetic potential of polysaccharide fractions separated from Centella asiatica (L.) leaves (CAL) were assessed. Initial single-factor experiments identified key extraction parameters, further optimized through response surface methodology (RSM) with optimal conditions determined as a liquid-to-solid ratio of 24.43:1 (mL/g), extraction time of 60.76 min, and a temperature of 83.31℃. Alcohol insoluble residue (AIR) extraction yielded three crude polysaccharide fractions (P50, P70, and P90). P50 was obtained with the highest yield (14.31%) and exhibited the highest content of total sugars and uronic acids (68.01 and 24.28 g/100 g, respectively). Calcium, magnesium, and manganese were dominant minerals in P50 and P70. Monosaccharide composition analysis via high-performance liquid chromatography (HPLC) demonstrated enrichment of galacturonic acid, galactose, and arabinose in P50 and P70. Furthermore, both fractions (P50 and P70) exhibited dose-dependent inhibitory effects on α-amylase and α-glucosidase. At 5 mg/mL, P50 caused 68.3% α-amylase inhibition and 62.3% α-glucosidase inhibition, while P70 triggered 46.8% and 34.1% inhibition, respectively. In conclusion, this study is the first to provide valuable insights into optimizing CAL extraction conditions. Potential utilization of polysaccharide fractions obtained from CAL as components for formulating functional foods can be explored in the future.
This study was supported by "Academic New Talent" Training Program of Xinyang Agriculture and Forestry University, Evaluation of characteristic germplasm resources and selection of good germplasm of wild oil tea in Dabie Mountain, Henan Province, China (242102110247), and INTI International University Seed grant (INTI-FHLS-01-26-2023).
The authors declare that they have no conflict of interest.
Ahn, J., Choi, W., Kim, S., Ha, T. (2011). Anti-diabetic effect of watermelon (Citrullus vulgaris Schrad) on Streptozotocin-induced diabetic mice. Food Science and Biotechnology, 20, 251-254.
Asif, M. (2017). Role of heavy metals in human health and particularly in respect to diabetic patients. Tang Humanitas Medicine, 7(1), 1.1-1.10.
Bai, Z., Meng, J., Huang, X., Wu, G., Zuo, S., Nie, S.J. (2020). Comparative study on antidiabetic function of six legume crude polysaccharides. International Journal of Biological Macromolecules, 154, 25-30.
Biswas, D., Mandal, S., Chatterjee Saha, S., Tudu, C.K., Nandy, S., Batiha, G.E., Shekhawat, M.S., Pandey, D.K., Dey, A. (2021). Ethnobotany, phytochemistry, pharmacology, and toxicity of Centella asiatica (L.) Urban: A comprehensive review. Phytotherapy Research, 35(12), 6624-6654.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.
Cai, L., Chen, B., Yi, F., Zou, S. (2019). Optimization of extraction of polysaccharide from dandelion root by response surface methodology: Structural characterization and antioxidant activity. International Journal of Biological Macromolecules, 140, 907-919.
Chen, S., Shang, H., Yang, J., Li, R., Wu, H. (2018). Effects of different extraction techniques on physicochemical properties and activities of polysaccharides from comfrey (Symphytum officinale L.) root. Industrial Crops and Products, 121, 18-25.
Chen, X., Chen, G., Wang, Z., Kan, J. (2020). A comparison of a polysaccharide extracted from ginger (Zingiber officinale) stems and leaves using different methods: Preparation, structure characteristics, and biological activities. International Journal of Biological Macromolecules, 151, 635-649.
Chen, Z., Yin, C., Fan, X., Ma, K., Yao, F., Zhou, R., Shi, D., Cheng, W., Gao, H. (2020). Characterization of physicochemical and biological properties of Schizophyllum commune polysaccharide extracted with different methods. International Journal of Biological Macromolecules, 156, 1425-1434.
Darwish, M., Gomaa, M., Elbially, E. (2023). In vitro evaluation of antihyperglycemic activity of polysaccharide fractions derived from sesame seeds hulls. Journal of Food and Dairy Sciences, 14(9), 215-220.
Deng, Y., Huang, L., Zhang, C., Xie, P., Cheng, J., Wang, X., Liu, L.J. (2020). Novel polysaccharide from Chaenomeles speciosa seeds: Structural characterization, α-amylase and α-glucosidase inhibitory activity evaluation. International Journal of Biological Macromolecules, 153, 755-766.
Deng, Y.-T., Lin-Shiau, S.-Y., Shyur, L.-F., Lin, J.-K.J.F. (2015). Pu-erh tea polysaccharides decrease blood sugar by inhibition of α-glucosidase activity in vitro and in mice. Food & Function, 6(5), 1539-1546.
Fang, C., Chen, G., Kan, J. (2020). Comparison on characterization and biological activities of Mentha haplocalyx polysaccharides at different solvent extractions. International Journal of Biological Macromolecules, 154, 916-928.
Gholamhoseinian, A., Shahouzehi, B., Mohammadi, G.J. (2020). Trace elements content of some traditional plants used for the treatment of diabetes mellitus. Biointerface Research in Applied Chemistry, 10(5), 6167-6173.
Hamid, A.A., Shah, Z.M., Muse, R., Mohamed, S. (2002). Characterisation of antioxidative activities of various extracts of Centella asiatica (L) Urban. Food Chemistry, 77(4), 465-469.
Hu, J.L., Nie, S.P., Xie, M.Y. (2018). Antidiabetic mechanism of dietary polysaccharides based on their gastrointestinal functions. Journal of Agricultural and Food Chemistry, 66(19), 4781-4786.
Hussain, S., Rehman, A.U., Obied, H.K., Luckett, D.J., Blanchard, C.L. (2022). Extraction, chemical characterization, in vitro antioxidant, and antidiabetic activity of canola (Brassica napus L.) meal. Separations, 9(2), art. no. 38.
Ji, X., Guo, J., Cao, T., Zhang, T., Liu, Y., Yan, Y.J. (2023). Review on mechanisms and structure-activity relationship of hypoglycemic effects of polysaccharides from natural resources. Food Science and Human Wellness, 12(6), 1969-1980.
Jomova, K., Makova, M., Alomar, S.Y., Alwasel, S.H., Nepovimova, E., Kuca, K., Rhodes, C.J., Valko, M.J. (2022). Essential metals in health and disease. Chemico-Biological Interactions, 367, art. no. 110173.
Kakar, M.U., Naveed, M., Saeed, M., Zhao, S., Rasheed, M., Firdoos, S., Manzoor, R., Deng, Y., Dai, R. (2020). A review on structure, extraction, and biological activities of polysaccharides isolated from Cyclocarya paliurus (Batalin) Iljinskaja. International Journal of Biological Macromolecules, 156, 420-429.
Lachkar, N., Lamchouri, F., Bouabid, K., Boulfia, M., Senhaji, S., Stitou, M., Toufik, H. (2021). Mineral composition, phenolic content, and in vitro antidiabetic and antioxidant properties of aqueous and organic extracts of Haloxylon scoparium aerial parts. Evidence-Based Complementary and Alternative Medicine, 2021 art. no. 9011168.
Li, J., Kisara, K., Danielsson, S., Lindstrom, M.E., Gellerstedt, G. (2007). An improved methodology for the quantification of uronic acid units in xylans and other polysaccharides. Carbohydrate Research, 342(11), 1442-1449.
Nie, C., Zhu, P., Wang, M., Ma, S., Wei, Z. (2017). Optimization of water-soluble polysaccharides from stem lettuce by response surface methodology and study on its characterization and bioactivities. International Journal of Biological Macromolecules, 105, Part 1, 912-923.
Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A.A., Ogurtsova, K., Shaw, J.E. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Research And Clinical Practice, 157, art. no. 107843.
Salahuddin, M.A.H., Ismail, A., Kassim, N.K., Hamid, M., Ali, M.S.M. (2020). Phenolic profiling and evaluation of in vitro antioxidant, alpha-glucosidase and alpha-amylase inhibitory activities of Lepisanthes fruticosa (Roxb) Leenh fruit extracts. Food Chemistry, 331, art. no. 127240.
Santos, J., Oliva-Teles, M., Delerue-Matos, C., Oliveira, M.J. (2014). Multi-elemental analysis of ready-to-eat “baby leaf” vegetables using microwave digestion and high-resolution continuum source atomic absorption spectrometry. Food Chemistry, 151, 311-316.
Shahid, M., Fazry, S., Azfaralariff, A., Najm, A.A.K., Law, D., Mackeen, M.M. (2023). Bioactive compound identification and in vitro evaluation of antidiabetic and cytotoxic potential of Garcinia atroviridis fruit extract. Food Bioscience, 51, art. no. 102285.
Sharmin, R., Khan, M., Akhter, M., Alim, A., Islam, A., Anisuzzaman, A.S.M., Ahmed, M. (2013). Hypoglycemic and hypolipidemic effects of cucumber, white pumpkin and ridge gourd in alloxan induced diabetic rats. Journal of Scientific Research, 5(1), 161-170.
Su, W., Wu, L., Liang, Q., Lin, X., Xu, X., Yu, S., Lin, Y., Zhou, J., Fu, Y., Gao, X., Zhang, B., Li, L., Li, D., Yin, Y., Song, G. (2022). Extraction optimization, structural characterization, and anti-hepatoma activity of acidic polysaccharides from Scutellaria barbata D. Don. Frontiers in Pharmacology, 13, art. no. 827782.
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., Stein, C., Basit, A., Chan, J.C.N., Mbanya, J.C., Pavkov, M.E., Ramachandaran, A., Wild, S.H., James, S., Herman, W.H., Zhang, P., Bommer, C., Kuo, S., Boyko, E.J., Magliano, D.J. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, art. no. 109119.
Tahrani, A.A., Barnett, A.H., Bailey, C.J. (2016). Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nature Reviews Endocrinology, 12(10), 566-592.
Wang, H., Shi, S., Bao, B., Li, X., Wang, S.J. (2015). Structure characterization of an arabinogalactan from green tea and its anti-diabetic effect. Carbohydrate Polymers, 124, 98-108.
Wang, L., Li, T., Liu, F., Liu, D., Xu, Y., Yang, Y., Zhao, Y., Wei, H. (2019). Ultrasonic-assisted enzymatic extraction and characterization of polysaccharides from dandelion (Taraxacum officinale) leaves. International Journal of Biological Macromolecules, 126, 846-856.
Wang, Y., Wang, X., Xiong, Y., Fan, J., Zheng, Z., Li, Y., Dong, L., Zhao, Z. (2019). Extraction optimization, separation and antioxidant activity of Luffa cylindrica polysaccharides. Food and Bioproducts Processing, 116, 98-104.
Wu, H., Li, M., Yang, X., Wei, Q., Sun, L., Zhao, J., Shang, H. (2020). Extraction optimization, physicochemical properties and antioxidant and hypoglycemic activities of polysaccharides from roxburgh rose (Rosa roxburghii Tratt.) leaves. International Journal of Biological Macromolecules, 165(Part A), 517-529.
Yang, B., Wu, Q., Luo, Y., Yang, Q., Chen, G., Wei, X., Kan, J. (2019). Japanese grape (Hovenia dulcis) polysaccharides: New insight into extraction, characterization, rheological properties, and bioactivities. International Journal of Biological Macromolecules, 134, 631-644.
Yao, Y.L., Shu, C., Feng, G., Wang, Q., Yan, Y.Y., Yi, Y., Wang, H.X., Zhang, X.F., Wang, L.M. (2020). Polysaccharides from Pyracantha fortuneana and its biological activity. International Journal of Biological Macromolecules, 150, 1162-1174.
Yue, F., Zhang, J., Xu, J., Niu, T., Lü, X., Liu, M. (2022). Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method. Frontiers in Nutrition, 9, art. no. 963318.
Zeng, F., Chen, W., He, P., Zhan, Q., Wang, Q., Wu, H., Zhang, M. (2020). Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels. Carbohydrate Polymers, 246, art. no. 116551.
Zhang, T.T., Lu, C.L., Jiang, J.G., Wang, M., Wang, D.M., Zhu, W. (2015). Bioactivities and extraction optimization of crude polysaccharides from the fruits and leaves of Rubus chingii Hu. Carbohydrate Polymers, 130, 307-315.
Zhang, Y., Chen, P., Zhang, Y., Jin, H., Zhu, L., Li, J., Yao, H. (2013). Effects of polysaccharide from pumpkin on biochemical indicator and pancreatic tissue of the diabetic rabbits. International Journal of Biological Macromolecules, 62, 574-581.
Zheng, Y., Bai, L., Zhou, Y., Tong, R., Zeng, M., Li, X., Shi, J.J. (2019). Polysaccharides from Chinese herbal medicine for anti-diabetes recent advances. International Journal of Biological Macromolecules, 121, 1240-1253.
Zhu, J., Liu, W., Yu, J., Zou, S., Wang, J., Yao, W., Gao, X.J. (2013). Characterization and hypoglycemic effect of a polysaccharide extracted from the fruit of Lycium barbarum L. Carbohydrate Polymers, 98(1), 8-16.
Journals System - logo
Scroll to top