Search for Author, Title, Keyword
ORIGINAL ARTICLE
Intermittent Microwave-Vacuum Drying Effects on Pears
,
 
,
 
,
 
 
 
More details
Hide details
1
Department of Biosystems Engineering, Faculty of Agriculture, Bursa Uludag University, Gorukle Campus, 16059, Bursa, Turkey
 
2
Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Bursa Uludag University, Gorukle Campus, 16059, Bursa, Turkey
 
 
Submission date: 2018-07-23
 
 
Final revision date: 2018-12-13
 
 
Acceptance date: 2018-12-18
 
 
Online publication date: 2018-12-18
 
 
Publication date: 2019-02-07
 
 
Corresponding author
Nazmi Izli   

Department of Biosystems Engineering, Faculty of Agriculture, Bursa Uludag University, Gorukle Campus, 16059, Bursa, Turkey; Tel.: +90 224 294 16 04; fax: +90 224 294 14 02.
 
 
Pol. J. Food Nutr. Sci. 2019;69(1):101-108
 
KEYWORDS
ABSTRACT
In the present study, the effects of intermittent microwave-vacuum drying on the “Deveci” pear in terms of the drying kinetics, mineral content, protein content, rehydration ratio, color, energy, specific energy and microstructure were investigated. According to the drying treatments, increased microwave power (100 and 200 W) and vacuum (200 and 400 mmHg) applications provided higher drying rates and protein content. Dried pear samples had a higher mineral content than fresh samples because of the increasing dry matter content. At the higher vacuum level experiments, the energy consumption reduced and the rehydration ratio increased. Moreover, the higher microwave power caused a decrease of the L* (lightness) value. However, a regular pore size and pore distribution in all drying experiments were observed in the microstructures of microwave-vacuum-dried samples.
 
REFERENCES (43)
1.
AlJuhaimi, F., Uslu, N., Özcan, M.M., ElBabiker, E.F., Ghafoor, K. (2016). Effect of drying on antioxidant activity, total phenol and mineral contents of pear fruits. Journal of Food Safety and Food Quality, 67, 164–167. https://doi.org/10.2376/0003-9....
 
2.
Amiripour, M., Habibi-Najafi, M.B., Mohebbi, M., Emadi, B. (2015). Optimization of osmo-vacuum drying of pear (Pyrus communis L.) using response surface methodology. Journal of Food Measurement and Characterization, 9(3), 269–280. https://doi.org/10.1007/s11694....
 
3.
Antal, T., Tarek-Tilistyák, J., Cziáky, Z., Sinka, L. (2017). Comparison of drying and quality characteristics of pear (Pyrus communis L.) using mid-infrared-freeze drying and single stage of freeze drying. International Journal of Food Engineering, 13(4), 125–146. https://doi.org/10.1515/ijfe-2....
 
4.
AOAC (1960). Association of official analytical chemists. Official Methods of Analysis (9th ed.). Washington, DC.
 
5.
Bai-Ngew, S., Therdthai, N., Dhamvithee, P. (2011). Characterization of microwave vacuum-dried durian chips. Journal of Food Engineering, 104(1), 114–122.
 
6.
Bai-Ngew, S., Therdthai, N., Dhamvithee, P., Zhou, W. (2015). Effect of microwave vacuum drying and hot air drying on the physicochemical properties of durian flour. International Journal of Food Science & Technology, 50(2), 305–312. https://doi.org/10.1111/ijfs.1....
 
7.
Celen, S., Kahveci, K. (2013). Microwave drying behaviour of tomato slices. Czech Journal of Food Science, 31(2), 132–138. https://doi.org/10.17221/30/20....
 
8.
Changrue, V., Orsat V., Raghavan, G.S.V. (2008). Osmotically dehydrated microwave-vacuum drying of strawberries. Journal of Food Processing and Preservation, 32(5), 798–816. https://doi.org/10.1111/j.1745....
 
9.
Cheenkachorn, K., Jintanatham P., Rattanaprapa, S. (2012). Drying of papaya (Carica papaya L.) using a microwave-vacuum dryer. World Academy of Science, Engineering and Technology, 6, 899–903. https://doi.org/10.1999/1307-6....
 
10.
Clary, C.D., Mejia-Meza, E., Wang, S., Petrucci, V.E. (2007). Improving grape quality using microwave vacuum drying associated with temperature control. Journal of Food Science, 72(1), E23–E28. https://doi.org/10.1111/j.1750....
 
11.
Cui, Z.W., Xu, S.Y., Sun, D.W. (2003). Dehydration of garlic slices by combined microwave-vacuum and air drying. Drying Technology, 21(7), 1173–1184. https://doi.org/10.1081/DRT-12....
 
12.
Dermelj, M., Bogenrieder, C., Hídvégi, M., Lásztity, R. (1995). Effect of microwave vacuum drying on protein and chlorophyll contents of blind nettle (Urtica urens L.). Periodica Polytechnica Chemical Engineering, 39, 77–84.
 
13.
Dotto, G.L., Souza, T.B., Simões, M.R., Morejon, C.F., Moreira, M.F.P. (2017). Diffusive-convective model considering the shrinkage applied for drying of pears (pyrus spp.). Journal of Food Process Engineering, 40(4), 1–8, art. no. UNSP e12503. https://doi.org/10.1111/jfpe.1....
 
14.
Doymaz, İ. (2013). Experimental study on drying of pear slices in a convective dryer. International Journal of Food Science & Technology, 48(9), 1909–1915. https://doi.org/10.1111/ijfs.1....
 
15.
Doymaz, İ., İsmail, O. (2012). Experimental characterization and modelling of drying of pear slices. Food Science and Biotechnology, 21(5), 1377–1381. https://doi.org/10.1007/s10068....
 
16.
Dujmić, F., Brnčić, M., Karlović, S., Bosiljkov, T., Ježek, D., Tripalo, B., Mofardin, I. (2013). Ultrasound-assisted infrared drying of pear slices: textural issues. Journal of Food Process Engineering, 36(3), 397–406. https://doi.org/10.1111/jfpe.1....
 
17.
FAO (2018). Food and agricultural organization statistica database. http://faostat3.fao.org/downlo....
 
18.
Ferreira, D., Da Silva, J.A.L., Pinto, G., Santos, C., Delgadillo, I., Coimbra, M. A. (2008). Effect of sun-drying on microstructure and texture of S. Bartolomeu pears (Pyrus communis L.). European Food Research and Technology, 226(6), 1545–1552. https://doi.org/10.1007/s00217....
 
19.
González-Martínez, C., Cháfer, M., Xue, K., Chiralt, A. (2006). Effect of the osmotic pre-treatment on the convective air drying kinetics of pear var. Blanquilla. International Journal of Food Properties, 9(3), 541–549. https://doi.org/10.1080/109429....
 
20.
Guiné, R.P.F., Barroca, M.J., Silva, V. (2013). Mass transfer properties of pears for different drying methods. International Journal of Food Properties, 16(2), 251–262. https://doi.org/10.1080/109429....
 
21.
Guiné, R.P.F., Ferreira, D.M.S., Barroca, M.J., Gonçalves, F.M. (2007). Study of the drying kinetics of solar-dried pears. Biosystems Engineering, 98(4), 422–429. https://doi.org/10.1016/j.bios....
 
22.
Gunasekaran, S., Yang, H.W. (2007). Effect of experimental parameters on temperature distribution during continuous and pulsed microwave heating. Journal of Food Engineering, 78(4), 1452–1456. https://doi.org/10.1016/j.jfoo....
 
23.
Han, Q.H., Yin, L.J., Li, S.J., Yang, B.N., Ma, J.W. (2010). Optimization of process parameters for microwave vacuum drying of apple slices using response surface method. Drying Technology, 28(4), 523–532. https://doi.org/10.1080/073739....
 
24.
Huang, L.L., Qiao, F., Fang, C.F. (2015). Studies on the microstructure and quality of iron yam slices during combined freeze drying and microwave vacuum drying. Journal of Food Processing and Preservation, 39(6), 2152–2160. https://doi.org/10.1111/jfpp.1....
 
25.
İzli, G. (2017). Total phenolics, antioxidant capacity, colour and drying characteristics of date fruit dried with different methods. Food Science and Technology (Campinas), 37(1), 139–147. https://doi.org/10.1590/1678-4....
 
26.
Jiang, H., Zhang, M., Mujumdar, A.S., Lim, R.X. (2014). Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying. Journal of the Science of Food and Agriculture, 94(9), 1827–1834. https://doi.org/10.1002/jsfa.6....
 
27.
Kumar, V., Shrivastava, S.L. (2017). Optimization of vacuum-assisted microwave drying parameters of green bell pepper using response surface methodology. Journal of Food Measurement and Characterization, 11(4), 1761–1772. https://doi.org/10.1007/s11694....
 
28.
Kuş, S. (2016). Mikrodalga enerjisiyle ayva ve armut meyvesinin kuruma davranışı ve modellemesi. MSc Thesis, Namık Kemal University, Tekirdağ, pp. 1–70, [https://tez.yok.gov.tr/UlusalT...], Available: 08.10. 2018.
 
29.
Liu, Z., Zhang, M., Fang, Z., Bhandari, B., Yang, Z. (2017). Dehydration of asparagus cookies by combined vacuum infrared radiation and pulse-spouted microwave vacuum drying. Drying Technology, 35(11), 1291–1301. https://doi.org/10.1080/073739....
 
30.
Lüle, F., Koyuncu, T. (2015). Convective and microwave drying characteristics of sorbus fruits (Sorbus domestica L.). Procedia - Social and Behavioral Sciences, 195(3), 2634–2643. https://doi.org/10.1016/j.sbsp....
 
31.
Lutovska, M., Mitrevski, V., Pavkov, I., Mijakovski, V., Radojčin, M. (2016). Mathematical modelling of thin layer drying of pear. Chemical Industry and Chemical Engineering, 22(2), 191–199. https://doi.org/10.2298/CICEQ1....
 
32.
Orikasa, T., Koide, S., Sugawara, H., Yoshida, M., Kato, K., Matsushima, U., Tagawa, A. (2018). Applicability of vacuum-microwave drying for tomato fruit based on evaluations of energy cost, color, functional components, and sensory qualities. Journal of Food Processing and Preservation, 42(6), 1–12. https://doi.org/10.1111/jfpp.1....
 
33.
Ozturk, A., Ozturk, B. (2014). The rootstock influences growth and development of ‘Deveci’ pear. Turkish Journal of Agricultural and Natural Sciences, 6, 1049–1053.
 
34.
Ozturk, I., Ercisli, S., Kalkan, F., Demir, B. (2009). Some chemical and physico-mechanical properties of pear cultivars. African Journal of Biotechnology, 8(4), 687-693.
 
35.
Santos, S.C., Guiné, R.P., Barros, A. (2014). Effect of drying temperatures on the phenolic composition and antioxidant activity of pears of rocha variety (Pyrus communis L.). Journal of Food Measurement and Characterization, 8(20, 105–112.
 
36.
Silva, V., Figueiredo, A.R., Costa, J.J., Guiné, R.P.F. (2014). Experimental and mathematical study of the discontinuous drying kinetics of pears. Journal of Food Engineering, 134, 30–36. https://doi.org/10.1016/j.jfoo....
 
37.
Song, C.F., Cui, Z., Jin, G.Y., Mujumdar, A.S., Yu, J.F. (2015). Effects of four different drying methods on the quality characteristics of peeled litchis (Litchi chinensis Sonn.). Drying Technology, 33(5), 583–590. https://doi.org/10.1080/073739....
 
38.
Therdthai, N., Zhou, W. (2009). Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). Journal of Food Engineering, 91(3), 482–489. https://doi.org/10.1016/j.jfoo....
 
39.
Tian, Y., Wu, S., Zhao, Y., Zhang, Q., Huang, J., Zheng, B. (2015). Drying characteristics and processing parameters for microwave-vacuum drying of kiwifruit (A ctinidia deliciosa) slices. Journal of Food Processing and Preservation, 39(6), 2620–2629. https://doi.org/10.1111/jfpp.1....
 
40.
Ulubaş Serçe, Ç., Gazel, M., Çağlayan, K., Özgen, M. (2010). Effect of Candidatus phytoplasma pyri infection on fruit quality, total phenolic content and antioxidant capacity of ‘Deveci’ pear. Julius-Kühn-Archiv, 427, 407–411.
 
41.
Zaki, N.A.M., Muhamad, I.I., Salleh, L.M. (2007). Drying characteristics of papaya (Carica papaya L.) during microwave-vacuum treatment. International Journal of Engineering and Technology, 4(1), 15–21.
 
42.
Zhang, Z., Wei, Q., Liu, C., Li, D., Liu, C., Jiang, N. (2017). Comparison of four pretreatments on the drying behavior and quality of taro (Colocasia esculenta L. Schott) slices during intermittent microwave vacuum-assisted drying. Drying Technology, 35(11), SI, 1347–1357. https://doi.org/10.1080/073739....
 
43.
Zielinska, M., Sadowski, P., Błaszczak, W. (2016). Combined hot air convective drying and microwave-vacuum drying of blueberries (Vaccinium corymbosum L.): drying kinetics and quality characteristics. Drying Technology, 34(6), 665–684.
 
 
CITATIONS (15):
1.
 
2.
 
3.
 
4.
 
5.
 
6.
 
7.
 
8.
 
9.
 
10.
 
11.
 
12.
 
13.
 
14.
 
15.
 
eISSN:2083-6007
ISSN:1230-0322
Journals System - logo
Scroll to top