Search for Author, Title, Keyword
Microalgae, a Potential Natural Functional Food Source – a Review
 
More details
Hide details
 
Publication date: 2017-12-31
 
 
Pol. J. Food Nutr. Sci. 2017;67(4):251-263
 
KEYWORDS
ABSTRACT
Microalgae are a group of microorganisms used in aquaculture. The number of studies regarding their use as a functional food has recently increased due to their nutritional and bioactive compounds such as polysaccharides, fatty acids, bioactive peptides, and pigments. Specific microalgal glucans (polysaccharides) can activate the immune system or exert antioxidant and hypocholesterolemic effects. The importance of algal lipids is based on their polyunsaturated fatty acids, their anti-inflammatory effects, their modulation of lipid pathways, and their neuroprotective action. Microalgae peptides can bind or inhibit specific receptors in cardiovascular diseases and cancer, while carotenoids can act as potent antioxidants. The beneficial biological activity will depend on the specific microalga and its chemical constituents. Therefore, knowledge of the composition of microalgae would aid in identifying, selecting, and studying their functional effects.
 
REFERENCES (130)
1.
Agrawal G.K., Timperio A.M., Zolla L., Bansal V., Shukla R., Rakwal R., Biomarker discovery and applications for foods and beverages: Proteomics to nanoproteomics. J. Proteomics, 2013, 93, SI, 74-92.
 
2.
Alderkamp A.C., Buma A.G.J., Van-Rijssel M., The carbohydrates of Phaeocystis and their degradation in the microbioal food web. Biogeochemistry, 2007, 83, 99-118.
 
3.
Arad S., Adda M., Cohen E., The potential of production of sulfated polysaccharides from Porphyridium. Plant Soil, 1985, 89, 117-127.
 
4.
Ball S., Colleoni C., Cenci U., Raj J.N., Tirtiaux C., The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis. J. Exp. Bot., 2011, 62, 1775-1801.
 
5.
Bandarra N.M., Pereira P.A., Bautista I., Vilela M.H., Fatty acids, sterols and α-tocopherol in Isochrysis galbana. J. Food Lipids, 2003, 10, 25-34.
 
6.
Barka A., Blecker C., Microalge as a potential source of singel-cell proteins. A review. Biotechnol. Agron. Soc. Environ., 2016, 20, 427-436.
 
7.
Barsanti L., Coltelli P., Evangelista V., Frassanito A.M., Passarelli V., Vesentini N., Gualterieri, P., The World of Algae. 2008, in: Algal Toxins: Nature, Ocurrence, Effect and Detection (eds. V. Evangelista, L. Barsanti, A.M. Frassanito, V. Passarelli, P. Gualtieri). Springer Science & Business Media B.V., pp. 281-304. DOI 10.1007/978-1-4020-8480-5_1.
 
8.
Bartsch I., Wiencke C., Bischof K., Buchholz C.M., Buck B.H., Eggert A., Feuerpfeil P., Hanelt D., Jacobsen S., Karez R., Karsten U., Molis M., Roleda M.Y., Schumann R., Schubert H., Valentin K., Weinberger F., Wiese J. The genus Laminaria sensu lato: recent insights and developments. Eur. J. Phycol., 2008, 43(1), 1–86.
 
9.
Becker E.W., Micro-algae as a source of protein. Biotechnol. Adv., 2007, 25, 207-210.
 
10.
Bellou S., Baeshen M., Elazzazy A.M., Aggeli D., Sayegh F., Aggelis G., Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol. Adv., 2014, 32, 1476-1493.
 
11.
Bernal J., Mendiola J.A., Ibáñez E., Cifuentes A., Advanced analysis of nutraceuticals. J. Pharm. Biomed. Anal., 2014, 55, SI, 758-774.
 
12.
Bianchi V.A., Castro J.M., Rocchetta I., Nhabedian D.E., Conforti V., Luquet C.M., Long-term feeding with Euglena gracilis cells modulates immune responses, oxidative balance and metabolic condition in Diplodon chilensis (Mollusca, Bivalva, Hyriidae) exposed to living Escherichia coli. Fish Shellfish Immunol., 2015, 42, 367-378.
 
13.
Brown M.R., Jeffrey S.W., Biochemical composition of microalgae from the green algae classes Chlorophyceae and Prasinophycae. 1. Amino acids, sugars and pigments. J. Exp. Mar. Biol. Ecol., 1992, 161, 91-113.
 
14.
Busi M.V., Barchiesi J., Martín M., Gómez-Casati D.F., Starch metabolism in green algae. Starch-Stärke, 2014, 66, 28-40.
 
15.
Camacho-Rodríguez J., Cerón-García M.C., Fernández-Sevilla J.M., Molina-Grima E., Culture conditions on biomass and hight value product generation by Nannochloropsis gaditana in aquaculture. Algal Res., 2015, 11, 63-73.
 
16.
Chacón-Lee T.L., González-Mariño G.E., Microalgae for “Healthy” Foods-Possibilities and ─Possibilities and Challenges. Compr. Rev. Food Sci. Food Safety, 2010, 9, 655-675.
 
17.
Chaiklahan R., Chirasuwan N., Loha V., Bunnag B., Lipid and fatty acids extraction from the Cyanobacteria Spirulina. ScienceAsia, 2008, 34, 299-305.
 
18.
Chen C.H., Review of a current role of mass spectrometry for proteome research. Anal. Chim. Acta, 2008, 624, 16-36.
 
19.
Chen J., Seviour R., Medicinal importance of fungal β-(1-3), (1-6)-glucans. Mycol. Res., 2007, 111(6), 635-652.
 
20.
Chen Y.S., Zheng Y., Labavitch J.M., VanderGheynst J.S., The impact of cell wall carbohydrate composition on the chitosan flocculation of Chlorella. Process Biochem., 2011, 46(10), 1927-1933.
 
21.
Chiovitti A., Molion P., Crawford S.A., Teng R., Spurck T., Wetherbee, R., The glucans extracted with warm water from diatoms are mainly derived from intracellular chrysolaminaran and not extracellular polysaccharides. Eur. J. Phycol., 2004, 39, 117-128.
 
22.
Chou N.T., Cheng C.F., Wu H.C., Lai C.P., Lin L.T., Pan I.H., Ko C.H., Chlorella sorokiniana-Induced activation and maturation of human monocyte-derived dendritic cells through NF-κB and PI3K/MAPK pathways. J. Evidence-Based Complem. Altern. Med., 2012, 1-12, art. No. 735396. Doi:10.1155/2012/735396.
 
23.
Chuecas L., Riley J.P., The component combined amino acids of some marine diatoms. J. Mar. Biol. Assoc. U. K., 1969, 49, 117-120.
 
24.
Cimica V., Batusic D., Haralanova-Ilieva B., Chen Y., Hollemann T., Pieler T., Ramadori G., Serian analysis of gene expression (SAGE) in rat liver regeneration. Biochem. Biophys. Res. Commun., 2007, 360, 545-552.
 
25.
Countinho P., Rema P., Otero A., Pereira O., Fábregas J., Use of biomass of the marine microalga Isochrysis galbana in the nutrition of goldfish (Carassius auratus) larvae as source of protein and vitamins. Aquacult. Res., 2006, 37, 793-798.
 
26.
deMello-Samapayo C., Corvo M.L., Mendes R., Duarte D., Lucas J., Pinto R., Batista A.P., Raymundo A., Silva-Lima B., Bandarra N.M., Gouveia L., Insights on the safety of carotenogenic Chlorella vulgaris in rodents. Algal Res., 2013, 2, 409-415.
 
27.
Deng R., Chow T.J., Hypolipidemic, antioxidant, and antiinflammatory Activities of microalgae Spirulina. Cardiovasc. Ther., 2010, 28, e33-e45.
 
28.
Desbois A.P., Mearns-Spragg A., Smith V.J., A fatty acid from the Diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar. Biotechnol., 2009, 11, 45-52.
 
29.
Dillehay T.D., Ramírez C., Pino M., Collins M.B., Rossen J., Pino-Navarro J.D., Monte Verde: seaweed, food, medicine, and the peopling of South America. Science, 2008, 320(5877), 784–786.
 
30.
Dineshkumar R., Dhanarajan G., Dash S.K., Sen R., An advanced hybrid medium optimization strategy for the enhanced productivity of lutein in Chlorella minustissima. Algal Res., 2015, 7, 24-32.
 
31.
Domergue F., Spiekermann P., Lerchl J., Beckmann C., Kilian O., Kroth P.G., Boland W., Zӑhringer U., Heinz E., New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal Δ12-fatty acid desaturases. Plant Physiol., 2003, 131, 1648-1660.
 
32.
Dörner J., Carbonell P., Pino S., Farias A., Variation on fatty acids in Isochrysis galbana (T-Iso) and Tetraselmis suecica, cultured under different nitrate availabilities. Fish Aquacult. J., 2014, 5, 3, 1-3.
 
33.
Dragone G., Fernándes B.D., Abreu A.P., Vicente A.A., Teixeira J.A., Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl. Energy, 2011, 88, 3331-3335.
 
34.
Dunstan G.A., Brown M.R., Volkman J.K., Cryptophyceae and Rhodopyceae; chemotaxonomy, phylogeny, and application. Phytochemistry, 2005, 66(21), 2557-2570.
 
35.
Duong V.T., Li Y., Nowak E., Schenck P.M., Microalgae isolation and selection for prospective biodiesel production. Energies, 2012, 5(6), 1835-1849.
 
36.
Dvir I., Stark A.H., Chayoth R., Madar Z., Arad S.M., Hypocholesterolemic effects of nutraceuticals produced from red microalga Porphyridium in rats. Nutrients, 2009, 1, 156-167.
 
37.
Fábregas J., Maseda A., Domínguez A., Ferreira M., Otero A., Changes in the cell composition of the marine microalga, Nannocchloropsis gaditana, during a light:dark cycle. Biotechnol. Lett., 2002, 24, 1699-1703.
 
38.
Gantar M., Svircev Z., Microalgae and Cyanobacteria: food for thought. J. Phycol., 2008, 44, 260-268.
 
39.
García-Mendoza N.S., Pacheco-Ruiz I., Carotenoid composition of marine red algae. J. Phycol., 2006, 42, 1208-1216.
 
40.
Gatenby C.M., Orcutt D.M., Kreeger D.A., Parker B.C., Jones V.A., Neves R.J., Biochemical composition of three algal species proposed as food for captive freshwater mussels. J. Appl. Phycol., 2003, 15, 1-11.
 
41.
Gelin F., Boogers I., Noordellos A.A.M., Sinninghe-Damsté J.S., Hatcher P.G., De Leeuw J.W., Novel, resistant microalgal polyethers: An important sink of organic carbon in the marine environment?. Geochim. Cosmochim. Acta, 1996, 60(7), 1275-1280.
 
42.
Geresh S., Arad S., Levy-Ontman O., Zhang W., Tekoah Y., Glaser R., Isolation and characterization of poly- and oligosaccharides from the red microalga Porphyridium sp. Carbohydr. Res., 2009, 344, 343–349.
 
43.
Giles G.E., Mahoney C.R., Kanarek R., Omega-3 fatty acids influence mood in healthy and depressed individuals. Nutr. Rev., 2013, 71(11), 727-741.
 
44.
Gilson P.R., McFadden G.I., Molecular, morphological and phylogenetic characterization of six chlorarchniophyte strains. Phycol. Res., 1999, 47, 7-19.
 
45.
Goiris K., Van-Colen W., Wilches I., León-Tamariz F., De Cooman L., Muylaert K., Impact of nutrient stress on antioxidant production in three species of microalgae. Algal Res., 2015, 7, 51-57.
 
46.
Gómez-Casati D.F., Cortassa S., Aon M.A., Iglesias A.A., Ultrasensitive behavior in the synthesis of storage polysaccharides in cyanobacteria. Planta, 2003, 215, 969-975.
 
47.
González-López C.V., Cerón-García M.C., Fernandez F.G.A., Segovia-Bustos C., Chisti Y., Fernández-Sevilla J.M., Protein measurements of microalga and cyanobacterial biomass. Bioresour. Technol., 2010, 101(9), 7585-7591.
 
48.
Guevara M., Bastardo L., Cortez R., Arredondo-Vega B., Romero, L., Gómez, P., Rhodomonas salina (Cryptophyta) pastes as feed for Brachionus plicatilis (Rotifera). Rev. Biol. Trop., 2011, 59(4), 1503-1515.
 
49.
Guschina I.A., Harwood J.L., Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res., 2006, 45, 160-186.
 
50.
Harun R., Singh M., Forde G.M., Danquah M.K., Bioprocess engineering of microalgae to produce a variety of consumer. Renewable Sustainable Energy Rev., 2010, 14, 1037-1047.
 
51.
Hempel F., Maier U.G., An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency. Microb. Cell Fact., 2012, 11, 126-132.
 
52.
Hempel N., Petrick I., Behrendt F., Biomass productivity and productivity of fatty acids and amino acids of microalgae strains as key characteristics of suitability for biodiesel production. J. Appl. Phycol., 2012, 24, 1407-1418.
 
53.
Herrero M., Simó C., García-Cañas V., Ibáñez E., Cifuentes A., Foodomics: MS-Based strategies in modern food science and nutrition. Mass Spectrom. Rev., 2012, 31, 49-69.
 
54.
Hirokawa Y., Fijiwara S., Suzuki M., Akiyama T., Sakamoto M., Kobayashi S., Tsuzuki M., Structural and physiological studies on the storage β-polyglucan of haptophyte Pleurochrysis haptonemofera. Planta, 2008, 227, 589-599.
 
55.
Hosikian A., Lim S., Halim R., Danquah M.K., Chlorophyll extraction from microalgae. A review on the process engineering aspects. Int. J. Chem. Eng., 2010, 2010, 1-11.
 
56.
Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M., Darzins A., Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J., 2008, 54, 621-639.
 
57.
Hu X., Yang X., Li L., Wu Y., Lin W., Huang H., Yang S., Antioxidant properties of microalgae protein hydrolysates prepared by neutral protease digestion. Appl. Mech. Mater., 2015, 707, 149-153.
 
58.
Huangfu J., Liu J., Peng C., Suen Y., Wang M. Jiang Y., Chen Z.Y., Chen F., DHA-rich marine microalga Shizocytrium mangrovei possess anti-ageing effects on Drosophila melanogaster. J. Funct. Foods, 2013, 5, 888-896.
 
59.
Hulanicka D., Erwin J., Bloch K., Lipid metabolism of Euglena gracilis. J. Biol. Chem., 1964, 238(9), 2778-2787.
 
60.
Kadkhodeaei S., Abbasiliasi S., Shun T.J., Masoumi H.R.F., Mohamed M.S., Movahedi A., Rahim R., Ariff A.B., Enhancement of protein production by microalgae Dunaliella salina under mixotrophic condition using response surface methodology. RSC Adv., 2015, 5, 38141-38151. DOI: 10.1039/C5RA04546K.
 
61.
Kato H., Saito K., Kimura T.A., A perspective on DNA microarray technology in food and nutritional science. Curr. Opin. Clin. Nutr. Metab. Care, 2005, 8, 516-522.
 
62.
Kerem M., Salman B., Pasaoglu H., Bedirli A., Alper M., Katircioglu H., Atici T., Perçin E.F., Ofluoglu E., Effects of microalgae Chlorella species crude extracts on intestinal adaptation in experimental short bowel syndrome. World J. Gastroenterol., 2008, 14(28), 4512-4517.
 
63.
Khan Z., Bhadouria P., Bisen P.S., Nutritional and therapeutic potential of Spirulina. Curr. Pharm. Biotechnol., 2005, 6, 373-379.
 
64.
Khozin-Goldberg I., Didi-Cohen S., Shayakhmetova I., Cohen Z., Biosynthesis of eicosapentaenoic acid (EPA) in the freshwater Eustigmatophyte Monodus subterraneus (Eustigmatophyceae). J. Phycol., 2002, 38, 745-756.
 
65.
Kim S.K., Wijesekara I., Development and biological activities of marine-derived bioactive peptides: A review. J. Funct. Foods, 2010, 2, 1-9.
 
66.
Koller M., Muhr A., Braunegg G., Microalgae as versatile cellular factories for valued products. Algal Res., 2014, 6, 52-63.
 
67.
Kraan S., Algal Polysaccharides, Novel Applications and Outlook. 2012, In: Biochemistry, Genetics and Molecular Biology. Carbohydrates-Comprehensive Studies on Glycobiology and Glycotechnology (ed. Chuan-Fa Chang). InTech, CCBY. , Rijeka, Croatia, pp. 489-532, ISBN 978-953-51-0864-1.
 
68.
Kulshreshtha A., Zacharia J.A., Jarouliya U., Bhadauriya P., Prasad G.B.K.S., Bisen P.S., Spirulina in health care management. Curr. Pharm. Biotechnol., 2008, 9, 400-405.
 
69.
Lang I.K., Hodac L., Friedl T., Feussner I., Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol., 2011, 11, 124-140.
 
70.
Lattimer J.M., Haub M.D., Effects of dietary fiber and is components on metabolic health. Nutrients, 2010, 2, 1266-1289.
 
71.
Leblond J.D., Timofte H.I., Roche S.A., Porter N.M., Mono- and diagalctosyl diacylglicerol composition of galucocystophytes (Glaucophyta): A modern interpretation using positive-ion electrospray ionization/mass spectrometry/mass spectrometry. Phycol. Res., 2010, 58(3), 222-229.
 
72.
Lee J.Y., Kim Y.J., Kim H.J., Kim Y.S., Park W., Immunostimulatory effect of laminarin on RW264.7 mouse macrophages. Molecules, 2012, 17, 5404-5411.
 
73.
Lichtlé C., Effects of nitrogen deficiency and light of high intensity on Cryptomonas rufescens (Cryptophyceae). Protoplasma, 1979, 101, 283-299.
 
74.
Liu C.Y., Zhao L., Han S., Li J.F., Li D.G., Identification and functional analysis of microRNAs in mice following focal cerebral ischemia injury. Int. J. Mol. Sci., 2015, 16(10), 24302-24318. doi:10.3390/ijms161024302.
 
75.
Loke M.F., Lui S.Y., Ng B.L., Gong M., Ho B., Antiadhesive property of microalgal polysaccharide extract on the binding of Helicobacter pylori to gastric mucin. FEMS Immunol. Med. Microbiol., 2007, 50, 231-238.
 
76.
Lordan S., Ross R.P., Stanton C., Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic disease. Mar. Drugs, 2011, 9, 1056-1100.
 
77.
Lüning K., Pang S.J., Mass cultivation of seaweeds: current aspects and approaches. J. Appl. Phycol., 2003, 15, 115-119.
 
78.
Ma Y., Wang Z., Yu, Ch., Yin Y., Zhou G., Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresour. Technol., 2014, 167, 503-509.
 
79.
Mairet F., Moisan M., Bernard O., Estimation of neutral lipid and carbohydrate quotas in microalgae using adaptive interval observers. Bioprocess Biosyst. Eng., 2014, 37, 51-61.
 
80.
Markou G., Angelidaki I., Georgakakis D., Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl. Microbiol. Biotechnol., 2012, 96, 631-645.
 
81.
Markou G., Nerantzis E., Microalgae for high-value compounds and biofuels productions: A review with focus on cultivation under stress conditions. Biotechnol. Adv., 2013, 31(8), 1532-1542.
 
82.
Maslova I.P., Mouradyan E.A., Lapina S.S., Klyachako-Gurvich G.L., Los D.A., Lipid fatty acid composition and thermophilicity of Cyanobacteria. Russ. J. Plant Physiol., 2004, 51(3), 353-360.
 
83.
McFadden G.I., Gilson P.R., Sims I.M., Preliminary characterization of carbohydrate stores from Chlorarachniophytes (Division: Chlorarachniophyta). Phycol. Res., 1997, 43(3), 145-151.
 
84.
McHugh D.J., A guide to the seaweed industry, FAO Fisheries Technical Papers 441. Food and Agriculture Organization of the United Nations. 2003, ISSN 0429-9345.
 
85.
Miller M.R., Quek S.Y., Staehler K., Nalder T., Packer, M.A., Changes in oil content, lipid class and fatty acid composition of the microalga Chaetoceros calcitrans over different phases of batch culture. Aquacult. Res., 2014, 45, 1634-1647.
 
86.
Morris H.J., Almarales A., Carrillo O., Bermúdez R.C., Utilisation of Chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates. Bioresour. Technol., 2008, 99(16), 7723-7729.
 
87.
Morris H.J., Carrillo O.V., Alonso M.E., Bermúdez R.C., Almarales A., Llauradó G., Lebeque Y., Fontaine R., Oral administration of an enzymatic protein hydrolysate from the Green Microalga Chlorella vulgare enhances the nutritional recovery of malnourished mice. J. Medic. Food, 2011, 14(12), 1583-1589.
 
88.
Mulders K.J.M., Weesepoel Y., Lamers P.P., Vincken J.P., Martens D.E. Wijffels R.H., Growth and pigment accumulation in nutrient-depleted Isochrysis galbana T-ISO. J. Appl Phycol., 2013, 25, 1421-1430.
 
89.
Müller P., Li X.P., Niyogi K.K., Non-phytochemical quenching. A response to excess light energy. Plant Physiol., 2001, 125, 1558-1566.
 
90.
Nakamura Y., Takahashi J.I., Sakurai A., Inaba Y., Suzuki E., Nihei S., Fujiwara S., Tsuzuki M., Miyashi H., Ikemoto H., Kawashi M., Sekiguchi H., Kurano N., Some Cyanobacteria synthesize semi-amylopectin type α-polyglucans instead of glycogen. Plant Cell Physiol., 2005, 46(3), 539-545.
 
91.
Neyrinck A.M., Mouson A., Delzenne N.M., Dietary supplementation with laminarin, a fermentable marine β (1-3) glucan, protects against hepatotoxicity induced by LPS in rat by modulation immune response in the hepatic tissue. Int. Immunopharmacol., 2007, 7, 1497-1506.
 
92.
Nuño K., Villarruel-López A., Puebla-Pérez A.M., Romero-Velarde E., Puebla-Mora A.G., Ascencio F., Effects of the marine microalgae Isochrysis galbana and Nannochloropsis oculata in diabetic rats. J. Funct. Foods, 2013, 5, 106-115.
 
93.
Nurachman Z., Hartini H., Rahmaniyah W.R., Kurnia D., Hidayat R., Prijamboedi B., Suendo V., Ratnaningsih E., Panggabean Z.M.G., Nurbaiti S., Tropical marine Chlorella sp. PP1 as a source of photosynthetic pigments for dye-sensitized solar cells. Algal Res., 2015, 10, 25-32.
 
94.
Obata M., Taguchi S., The xanthophy II-cycling pigment dynamics of Isochrysis galbana (Prymnesiophyceae) during light-dark transition. Plankton Benthos Res., 2012, 7(3), 101-110.
 
95.
Ohlrogge J., Browse J., Lipid biosynthesis. Plant Cell, 1995, 7, 957-970.
 
96.
Olofsson M., Lamela T., Nilsson E., Bergé J.P., del Pino V., Uronen P., Legrand C., Seasonal variation of lipids and fatty acids of the microalgae Nannochloropsis oculata grow in outdoor large-scale photobioreactors. Energies, 2012, 5, 1577-1592.
 
97.
Oren A., A hundred years of Dunaliella research: 1905-2005. Saline Syst., 2005, 1(2), 1-14. doi:10.1186/1746-1448-1-2.
 
98.
Paulsen B.S., Vieira A.A.H., Klaveness D., Structure of extracellular polysaccharides produced by soil Cryptomonas sp. (Cryptophyceae). J. Phycol., 1992, 28(1), 61-63.
 
99.
Peake J.M., Gobe G.C., Fassett R.G., Coombes J.S., The effects of dietary fish oil on inflammation, fibrosis and oxidative stress associated with obstructive renal injury in rats. Mol. Nutr. Food Res., 2011, 55, 400-410.
 
100.
Peng J., Yuan J.P., Wu C.F., Wang J.H., Fucoxanthin, a marine carotenoid present in seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar. Drugs, 2011, 9, 1806-1828.
 
101.
Petkov G., García G., Which are fatty acids of the green alga Chlorella?. Biochem. Syst. Ecol., 2007, 35, 281-285.
 
102.
Pulz O., Gross W., Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol., 2004, 65, 635-648.
 
103.
Raja R., Hemaiswarya S., Kumar N.A., Sridhar S., Rengasamy R.A., A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol., 2008, 34, 77-88.
 
104.
Ramachandra T.V., Mahapatra D.M., Karthick B., Gordon R., Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind. Eng. Chem. Res., 2009, 48, 8769-8788.
 
105.
Raposo M.F.D.J., Costa de Morais R.M.S., Bernardo de Morais A.M.M., Bioactivity and applications of sulphated polysaccharides from marine microalga. Mar. Drugs, 2013, 11, 233-252.
 
106.
Rebolloso-Fuentes M.M., Acien-Fernández G.G., Sánchez-Pérez J.A., Guil-Guerrero J.L., Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem., 2000, 70(13), 345-353.
 
107.
Roche S.A., Leblond J., Betaine lipids in chlorarachniophytas. Phycol. Res., 2010, 58, 298-305.
 
108.
Rodolfi L., Zittelli G.C., Bassi N., Padovani G., Biondi N., Bonini G., Tredici M.R., Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng., 2009, 102(1), 100-112.
 
109.
Ryckebosch E., Bruneel C., Muylaert K., Foubert I., Microalgae as an alternative source of omega- 3 long chain polyunsaturated fatty acids. Lipid Technol., 2012, 24(6), 128-130.
 
110.
Safi C., Ursu A.V., Laroche C., Zebia B., Merah O., Pontalier P.Y., Vaca-García C., Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods. Algal Res., 2014, 3, 61-65.
 
111.
Sahu A., Pancha I., Jain D., Paliwal C., Ghosh T., Patidar S., Bhattacharya S., Mishra S., Fatty acids as biomarkers of microalgae. Phytochemistry, 2013, 89, 53-58.
 
112.
Samarakoon, K.W., Ko J.Y., Lee J.H., Kwon O.N., Kim S.W., Jeon Y.J., Apoptotic anticancer activity of a novel fatty alcohol ester isolated from cultured marine diatom, Phaeodactylum tricornutum. J. Funct. Foods, 2014, 6, 231-240.
 
113.
Schwenzfeier A., Wierenga P.A., Gruppen H., Isolation and characterization of soluble protein from the green microalga Tetraselmis sp. Bioresour. Technol., 2011, 102, 9121-9127.
 
114.
Senni K., Gueniche F., Foucault-Bertaud A., Ignondjo-Tchen S. Fioretti F., Colliec-Jouault S., Durand P., Guezennec J., Godeau G., Letoruneur D., Fucoidan a sulfated polysaccharide from brown algae is a potent modulator of connective tissue proteolysis. Arch. Biochem. Biophys., 2006, 445(1), 56-64.
 
115.
Servaites J.C., Faeth J.L., Sidhu S.S., A dye binding method for measurement of total protein. Anal. Biochem., 2012, 421(1), 75-80.
 
116.
Sharkey F.H., Banat I.M., Marchant R., Detection and quantification of gene expression in environmental bacteriology. Appl. Environ. Microbiol., 2004, 70(7), 3795-3806.
 
117.
Shimonaga T., Konishi M., Oyama Y., Fujiwara S., Satoh A., Fujita N., Colleoni C., Buléon A., Putaux J.L., Ball S.G., Yokoyam A., Hara Y., Nakamura Y., Tsuzuki M., Variation in storage α-glucans of the Porphyridiales (Rhodophyta). Plant Cell Physiol., 2008, 49(1), 103–116 doi:10.1093/pcp/pcm172, available online at [www.pcp.oxfordjournals.org].
 
118.
Singh S., Kate B. N., Banerjee U.C., Bioactive compounds from cyanobacteria and microalgae: an overview. Crit. Rev. Biotechnol., 2005, 25(3), 73-95.
 
119.
Song P., Li L., Liu J., Proteomic analysis in nitrogen-deprived Isochrysis galbana during lipid accumulation. PLoS One, 2013, 8(12), e82188. Doi: 10.1371/journal.pone.0082188.
 
120.
Stier H., Ebbeskotte V., Gruenwald J., Immunomodulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutr. J., 2014, 13, 38-47.
 
121.
Su C.H., Fu C.C., Chang Y.C., Nair G.R., Ye J.L., Chu I.M., Wu W.T., Simultaneous estimation of chlorophyll a and lipid contents in microalgae bye three-color analysis. Biotechnol. Bioeng., 2008, 99(4), 1034-1039. DOI 10.1002/bit.21623.
 
122.
Tai CC., Ding S.T., N-3 polyunsaturated fatty acids regulate lipid metabolism through several inflammation mediators: mechanisms and implications for obesity prevention. J. Nutr. Biochem., 2010, 21, 357-363.
 
123.
Takaichi S., Carotenoids in algae: distribution, biosynthesis and functions. Mar. Drugs, 2011, 9, 1101-1118.
 
124.
Takeyama H., Kanamaru A., Yoshino Y., Kakuta H., Kawamura Y., Matsunaga T., Production of antioxidant vitamins, β-carotene, vitamin C, and vitamin E, by two-step culture of Euglena gracilis Z. Biotechnol. Bioeng., 1997, 53(2), 185-190.
 
125.
Templeton D.W., Laurens L.M.L., Nitrogen-to-protein conversion factors revisited for application of microalga biomass conversion to food, feed and fuel. Algal Res., 2015, 11, 359-367.
 
126.
Tomaselli L., Biological Principles of Mass Cultivation. 2004, In: Handbook of Microalgal Culture: Biotechnology and Applied Phycology (ed. A. Richmond) Edit. Blackwell Publishing, Ltd. pp. 3-19, ISBN 0-632-0553-2.
 
127.
Vinolo M.A.R., Rodrigues H.G., Nachbar R.T., Curi R., Regulation of Inflammation by short chain fatty acids. Nutrients, 2011, 3, 858-876.
 
128.
Wikfors G.H., Ohno M., Impact of algal research in aquaculture. J. Phycol., 2001, 37, 968-974.
 
129.
Wismar R., Brix S., Lærke H.N., Frøkiær H., Comparative analysis of a large panel of on-starch polysaccharides reveals structures with selective regulatory properties in dendritic cells. Mol. Nutr. Food Res., 2011, 55, 443-454.
 
130.
Wutsman B.A., Gretz M.R., Hoagland K., Extracelluar matrix assembly in diatoms (Bacillariophyceae). Plant Physiol., 1997, 113, 1059-1069.
 
 
CITATIONS (83):
1.
 
2.
 
3.
 
4.
 
5.
 
6.
 
7.
 
8.
 
9.
 
10.
 
11.
 
12.
 
13.
 
14.
 
15.
 
16.
 
17.
 
18.
 
19.
 
20.
 
21.
 
22.
 
23.
 
24.
 
25.
 
26.
 
27.
 
28.
 
29.
 
30.
 
31.
 
32.
 
33.
 
34.
 
35.
 
36.
 
37.
 
38.
 
39.
 
40.
 
41.
 
42.
 
43.
 
44.
 
45.
 
46.
 
47.
 
48.
 
49.
 
50.
 
51.
 
52.
 
53.
 
54.
 
55.
 
56.
 
57.
 
58.
 
59.
 
60.
 
61.
 
62.
 
63.
 
64.
 
65.
 
66.
 
67.
 
68.
 
69.
 
70.
 
71.
 
72.
 
73.
 
74.
 
75.
 
76.
 
77.
 
78.
 
79.
 
80.
 
81.
 
82.
 
83.
 
eISSN:2083-6007
ISSN:1230-0322
Journals System - logo
Scroll to top