ORIGINAL ARTICLE
Nutritional and Preservative Potential of Tunisian Nigella sativa L. Seeds: Insights into Lipid Composition, Antioxidant Activity, and Antimicrobial Effects
More details
Hide details
1
Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorization (LR18ES03), Department of Biology, Faculty of Sciences, University of Tunis El Manar, El Manar I., Tunisia
2
Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Rancho de la Merced Center, Carretera Cañada de la Loba (CA-3102) Km 3.1., SN, 11471 Jerez de la Frontera, Cádiz, Spain
3
MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Submission date: 2025-06-18
Final revision date: 2025-12-19
Acceptance date: 2025-12-28
Online publication date: 2026-01-12
Corresponding author
Faouzi Sakouhi
Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorization (LR18ES03), Department of Biology, Faculty of Sciences, University of Tunis El Manar, El Manar I., Tunisia
KEYWORDS
TOPICS
ABSTRACT
Research on new natural resources with nutritional and preservative properties has gained increasing interest among modern consumers and the contemporary food industry. In this context, this study aimed to explore the bioactive potential of Nigella sativa L. seeds collected from various locations in Tunisia. The results highlight the considerable potential of N. sativa seeds for oil production, due to high oil yield (23–28%). These findings also reveal the abundance of bioactive lipids, including linoleic acid (C18:2, 49.66 to 58.47% of total fatty acids), β-sitosterol (88.19 to 100.46 mg/100 g oil), triacontanol (24.13 to 30.48 mg/kg oil), and α-tocopherol (10.38 to 11.51 mg/100 g oil). The hydroethanolic seed extracts exhibited the highest antioxidant activity compared to the ethanol and aqueous extracts, due to their higher contents of phenolic compounds, with total phenolic content ranging from 72.50 to 74.35 mg GAE/g, total flavonoid content from 23.48 to 29.47 mg QE/100 g, and total tannin content from 7.18 to 8.07 mg CE/g. Furthermore, ethanolic extracts showed antibacterial activity against bacterial strains, including Escherichia coli, Pseudomonas aeruginosa, Salmonella enteritidis, and Staphylococcus aureus frequently found in rotten food products. These findings underscore the value of N. sativa seeds as a rich source of natural compounds with good potential for use in food preservation and nutritional enhancement.
ACKNOWLEDGEMENTS
We gratefully acknowledge the Ministry of Agriculture of Tunisia for granting permission to collect Nigella seed samples. We also thank Raquel Rodríguez Solana for supporting part of this work through grant RYC2022-036888-I, funded by MCIN/AEI/10.13039/501100011033 and co-funded by the FSE+.
FUNDING
This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia, and by grant RYC2022-036888-I awarded to Raquel Rodríguez Solana, funded by MCIN/AEI/10.13039/501100011033 and co-funded by the FSE+.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest to influence the work reported in this paper.
REFERENCES (46)
1.
Ahmad, M.F., Ahmad, F.A., Ashraf, S., Saad, H.H., Wahab, S., Khan, M.I., Ali, M., Mohan, S., Hakeem, K.R., Athar, M.T. (2021). An updated knowledge of black seed (Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. Journal of Herbal Medicine, 25, art. no. 100404.
https://doi.org/10.1016/j.herm....
2.
Ahmed, Z.H.T., Singh, P., Shankar, R., Kumar, S., Sarkar, D., Shah, U.N., Hassan, S. (2026). Chapter 6 – Unleashing the nutritional power of sunflower seeds, pumpkin seeds, chia seeds, flaxseeds, and hemp seeds. In G.A. Nayik, R. Singh, S. Danish, M.J. Ansari (Eds.), Superfoods: Exploring Nutrition and Health Benefits, Academic Press, pp. 99–128.
https://doi.org/10.1016/C2024-....
3.
Akter, Z., Ahmed, F.R., Tania, M., Khan, M.A. (2021). Targeting inflammatory mediators: An anticancer mechanism of thymoquinone action. Current Medicinal Chemistry, 28(1), 80–92.
https://doi.org/10.2174/092986....
4.
Alasalvar, C., Chang, S.K., Bolling, B., Oh, W.Y., Shahidi, F. (2021). Specialty seeds: Nutrients, bioactives, bioavailability, and health benefits: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 20(3), 2382–2427.
https://doi.org/10.1111/1541-4....
5.
Albakry, Z., Karrar, E., Ahmed, I. A.M., Oz, E., Proestos, C., El Sheikha, A.F., Oz, F., Wu, G., Wang, X. (2022). Nutritional composition and volatile compounds of black cumin (Nigella sativa L.) seed, fatty acid composition and tocopherols, polyphenols, and antioxidant activity of its essential oil. Horticulturae, 8(7), art. no. 575.
https://doi.org/10.3390/hortic....
6.
Alberts, A., Moldoveanu, E.T., Niculescu, A.G., Grumezescu, A.M. (2024). Nigella sativa: A comprehensive review of its therapeutic potential, pharmacological properties, and clinical applications. International Journal of Molecular Sciences, 25(24), art. no. 13410.
https://doi.org/10.3390/ijms25....
7.
Alizadeh, L., Abdolmaleki, K., Nayebzadeh, K., Shahin, R. (2019). Effects of tocopherol, rosemary essential oil, and Ferulago angulata extract on oxidative stability of mayonnaise during its shelf life: A comparative study. Food Chemistry, 285, 46–52.
https://doi.org/10.1016/j.food....
8.
AOCS (1989). Tocopherols and tocotrienols in vegetable oils and fats by HPLC. Official Method Ce-89 of the American Oil Chemists’ Society. AOCS Press, Champaign, IL, USA.
9.
Azemi, N.A., Azemi, A.K., Abu-Bakar, L., Sevakumaran, V., Muhammad, T.S.T., Ismail, N. (2023). Effect of linoleic acid on cholesterol levels in a high-fat diet-induced hypercholesterolemia rat model. Metabolites, 13(1), art. no. 53.
https://doi.org/10.3390/metabo....
10.
Benzie, I.F., Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76.
https://doi.org/10.1006/abio.1....
11.
Bourgou, S., Pichette, A., Marzouk, B., Legault, J. (2012). Antioxidant, anti-inflammatory, anticancer, and antibacterial activities of extracts from Nigella sativa (black cumin) plant parts. Journal of Food Biochemistry, 36, 539–546.
https://doi.org/10.1111/j.1745....
12.
Brand Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT Food Science and Technology, 28(1), 25 30.
https://doi.org/10.1016/S0023-....
13.
de Lucas, A., García, A., Alvarez, A., Gracia, I. (2007). Supercritical extraction of long-chain n-alcohols from sugar cane crude wax. Journal of Supercritical Fluids, 41(2), 267–271.
https://doi.org/10.1016/j.supf....
14.
Dubois, V., Breton, S., Linder, M., Fanni, J., Parmentier, M. (2007). Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. European Journal of Lipid Science and Technology, 109(7), 710–732.
https://doi.org/10.1002/ejlt.2....
15.
Goriainov, S.V., Esparza, C.A., Borisova, A.R., Orlova, S.V., Vandyshev, V.V., Hajjar, F., Platonov, E.A., Chromchenkova, E.P., Novikov, O.O., Borisov, R.S., Kalabin, G.A. (2021). Phytochemical study of the composition of the unsaponifiable fraction of various vegetable oils by gas chromatography–mass spectrometry. Journal of Analytical Chemistry, 76, 1635–1644.
https://doi.org/10.1134/S10619....
16.
Gueffai, A., Gonzalez-Serrano, D.J., Christodoulou, M.C., Orellana-Palacios, J.C., Ortega, M.L.S., Ouldmoumna, A., Kiari, F.Z., Ioannou, G.D., Kapnissi-Christodoulou, C.P., Moreno, A., Hadidi, M. (2022). Phenolics from defatted black cumin seeds (Nigella sativa L.): Ultrasound-assisted extraction optimization, comparison, and antioxidant activity. Biomolecules, 12(9), art. no. 1311.
https://doi.org/10.3390/biom12....
17.
Ibrahim, A.A., Abdel Razik, E.S., Abd-Ellatif, S., Ramadan, S. (2023). Nigella sativa and stressful conditions. In A.K.M. Golam Sarwar (Ed.), Medicinal Plant Responses to Stressful Conditions, 1st edition, CRC Press/Taylor & Francis, pp. 223-242.
https://doi.org/10.1201/978100....
18.
Jackson, M.A., Eller, F.J. (2006). Isolation of long-chain aliphatic alcohols from beeswax using lipase-catalysed methanolysis in supercritical carbon dioxide. Journal of Supercritical Fluids, 37(2), 173–177.
https://doi.org/10.1016/j.supf....
19.
Jiménez, P., Bustamante, A., Echeverría, F., Sambra, V., Rincón-Cervera, M.Á., Farías, C., Valenzuela, R. (2024). Metabolic benefits of phytosterols: Chemical, nutritional, and functional aspects. Food Reviews International, 20(9), 2917-2939.
https://doi.org/10.1080/875591....
20.
Julkunen-Tiitto, R. (1985). Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry, 33(2), 213-217.
https://doi.org/10.1021/jf0006....
21.
Kadam, D., Lele, S.S. (2017). Extraction, characterization and bioactive properties of Nigella sativa seedcake. Journal of Food Science and Technology, 54, 3936–3947.
https://doi.org/10.1007/s13197....
22.
Kamal-Eldin, A., Appelqvist, L.A. (1996). The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 31(7), 671–701.
https://doi.org/10.1007/BF0252....
23.
Karnwal, A., Malik, T. (2024). Exploring the untapped potential of naturally occurring antimicrobial compounds: novel advancements in food preservation for enhanced safety and sustainability. Frontiers in Sustainable Food Systems, 8, art. no. 1307210.
https://doi.org/10.3389/fsufs.....
24.
Kazemi, R., Yazdanpanah, E., Esmaeili, S.A., Yousef, B., Baharlou, R., Haghmorad, D. (2024). Thymoquinone improves experimental autoimmune encephalomyelitis by regulating both pro-inflammatory and anti-inflammatory cytokines. Molecular Biology Reports, 51, art. no. 256.
https://doi.org/10.1007/s11033....
25.
Kiani, M., Alahdadi, I., Soltani, E., Boelt, B., Benakashani, F. (2020). Variation of seed oil content, oil yield, and fatty acids profile in Iranian Nigella sativa L. landraces. Industrial Crops and Products, 149, art. no. 112367.
https://doi.org/10.1016/j.indc....
26.
Majeed, A., Muhammad, Z., Ahmad, H., Rehmanullah-Hayat S.S., Inayat, N., Siyyar, S. (2021). Nigella sativa L.: Uses in traditional and contemporary medicines – An overview. Acta Ecologica Sinica, 41(4), 253-258.
https://doi.org/10.1016/j.chna....
27.
Mariod, A.A., Ibrahim, R.M., Ismail, M., Ismail, N. (2009). Antioxidant activity and phenolic content of phenolic-rich fractions obtained from black cumin (Nigella sativa) seedcake. Food Chemistry, 116(1), 306–312.
https://doi.org/10.1016/j.food....
28.
Nadaf, N.H., Gawade, S.S., Muniv, A.S., Waghmare, S.R., Jadhav, D.B., Sonawane, K.D. (2015). Exploring anti-yeast activity of Nigella sativa seed extracts. Industrial Crops and Products, 77, 624–630.
https://doi.org/10.1016/j.indc....
29.
Nattagh-Eshtivani, E., Barghchi, H., Pahlavani, N., Barati, M., Amiri, Y., Fadel, A., Khosravi, M., Talebi, S., Arzhang, P., Ziaei, R., Ghavami, A. (2022). Biological and pharmacological effects and nutritional impact of phytosterols: A comprehensive review. Phytotherapy Research, 36(1), 299–322.
https://doi.org/10.1002/ptr.73....
30.
Ouattar, H., Zouirech, O., Kara, M., Assouguem, A., Almutairi, S.M., Al-Hemaid, F.M., Rasheed, R.A., Ullah, R., Abbasi, A.M., Aouane, M., Mikou, K. (2022). In vitro study of the phytochemical composition and antioxidant, immunostimulant, and hemolytic activities of Nigella sativa (Ranunculaceae) and Lepidium sativum seeds. Molecules, 27(18), art. no. 5946.
https://doi.org/10.3390/molecu....
31.
Pashkovskaya, A.A., Vazdar, M., Zimmermann, L., Jovanovic, O., Pohl, P., Pohl, E.E. (2018). Mechanism of long-chain free fatty acid protonation at the membrane-water interface. Biophysical Journal, 114(9), 2142–2151.
https://doi.org/10.1016/j.bpj.....
32.
Patterson, L.K. (1981). Studies of radiation induced peroxidation in fatty acid micelles. In M.A.J. Rodgers, E.L. Powers (Eds.), Oxygen and Oxy-Radicals in Chemistry and Biology, Academic Press, New York, pp. 89-95, ISBN-13: 9780125637800.
33.
Petersen, K.S., Maki, K.C., Calder, P.C., Belury, M.A., Messina, M., Kirkpatrick, C.F., Harris, W.S. (2024). Perspective on the health effects of unsaturated fatty acids and commonly consumed plant oils high in unsaturated fat. British Journal of Nutrition, 132(8), 1039–1050.
https://doi.org/10.1017/S00071....
34.
Piper, J.D., Piper, P.W. (2017). Benzoate and sorbate salts: A systematic review of the potential hazards of these invaluable preservatives and the expanding spectrum of clinical uses for sodium benzoate. Comprehensive Reviews in Food Science and Food Safety, 16(5), 868–880.
https://doi.org/10.1111/1541-4....
35.
Ravi, Y., Periyanadar, I.V., Saxena, S.N., Muthurajan, R., Sundararajan, V., Pridiuldi, S.V., Meena, S.S., Naik, A.N., Harisha, C.B., Asangi, H., Choudhary, S., Singh, R., Dengeru, Y., Kumar, V.K., Meena, N.K., Meena, R.S., Verma, A.K. (2024). Identification, validation and quantification of thymoquinone in conjunction with assessment of bioactive possessions and GC-MS profiling of pharmaceutically valuable crop Nigella (Nigella sativa L.) varieties. PeerJ, 12, art. no. 17177.
https://doi.org/10.7717/peerj.....
36.
Sakouhi, F., Chérif, A., Saadi, C., Boukhchina, S. (2023). Assessment of the bioactive lipid profiles of oil extracted from Tunisian table olive cultivars (Barouni, Besbassi, and Marsaline cvs.). European Journal of Lipid Science and Technology, 125(12), art. no. 2300013.
https://doi.org/10.1002/ejlt.2....
37.
Sakouhi, F., Herchi, W., Sebei, K., Absalon, C., Kallel, H., Boukhchina, S. (2011). Accumulation of total lipids, fatty acids, and triacylglycerols in developing fruits of Olea europaea L. Scientia Horticulturae, 132, 7–11.
https://doi.org/10.1016/j.scie....
38.
Singleton, V.L., Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.
https://doi.org/10.5344/ajev.1....
39.
Sumara, A., Stachniuk, A., Montowska, M., Kotecka-Majchrzak, K., Grywalska, E., Mitura, P., Martinović, L.S., Pavelić, S.K., Fornal, E. (2023). Comprehensive review of seven plant seed oils: chemical composition, nutritional properties, and biomedical functions. Food Reviews International, 39(8), 5402–5422.
https://doi.org/10.1080/875591....
40.
Tiji, S., Rokni, Y., Benayad, O., Laaraj, N., Asehraou, A., Mimouni, M. (2021). Chemical composition related to antimicrobial activity of Moroccan Nigella sativa L. extracts and isolated fractions. Evidence-Based Complementary and Alternative Medicine, 2021, art. no. 8308050.
https://doi.org/10.1155/2021/8....
41.
Trautwein, E.A., Koppenol, W.P., de Jong, A., Hiemstra, H., Vermeer, M.A., Noakes, M., Luscombe-Marsh, N.D. (2018). Plant sterols lower LDL-cholesterol and triglycerides in dyslipidemic individuals with or at risk of developing type 2 diabetes: A randomized, double-blind, placebo-controlled study. Nutrition & Diabetes, 8, art. no. 30.
https://doi.org/10.1038/s41387....
42.
Wang, W., Xiong, P., Zhang, H., Zhu, Q., Liao, C., Jiang, G. (2021). Analysis, occurrence, toxicity, and environmental health risks of synthetic phenolic antioxidants: A review. Environmental Research, 201, art. no. 111531.
https://doi.org/10.1016/j.envr....
43.
Weerakkody, N.S., Caffin, N., Turner, M.S., Dykes, G.A. (2010). In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria. Food Control, 21(10), 1408–1414.
https://doi.org/10.1016/j.food....
44.
Weerawatanakorn, M., Meerod, K., Wongwaiwech, D., Ho, C.T. (2019). Policosanols: Chemistry, occurrence, and health effects. Current Pharmacology Reports, 5, 131–149.
https://doi.org/10.1007/s40495....
45.
Zhishen, J., Mengcheng, T., Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559.
https://doi.org/10.1016/S0308-....
46.
Zwolan, A., Pietrzak, D., Adamczak, L., Chmiel, M., Kalisz, S., Wirkowska-Wojdyła, M., Florowski, T., Oszmiański, J. (2020). Effects of Nigella sativa L. seed extracts on lipid oxidation and color of chicken meatballs during refrigerated storage. LWT – Food Science and Technology, 130, art. no. 109718.
https://doi.org/10.1016/j.lwt.....