Search for Author, Title, Keyword
ORIGINAL ARTICLE
Effect of Germination Time on the Content of Nutritional and Bioactive Compounds of Chenopodium quinoa Wild. Seeds Cultivated in Eastern Morocco
 
More details
Hide details
1
Department of Biology, Multidisciplinary Faculty of Nador, Mohamed 1st University, B.P. 300, Selouane 60700, Morocco
 
2
Laboratory of Plant Ecology, National Institute of Agronomic Research, CRRA Oujda, 10 Bd Mohamed VI, B.P. 428, Oujda 60000, Morocco
 
3
Department of Agricultural Development, CIRAD, UMR SENS, 34398 Montpellier, France
 
4
SENS, CIRAD, IRD, Université de Paul Valéry Montpellier 3, 34090 Montpellier, France
 
5
Departement of Biology, Laboratory of Agricultural Production Improvement, Biotechnology and Environment, Faculty of Sciences, University Mohammed First, Box 717, Oujda 60000, Morocco, Morocco
 
6
Hassan II Institute of Agronomy and Veterinary Medicine, Rabat 10112, Morocco, Morocco
 
 
Submission date: 2024-12-28
 
 
Acceptance date: 2025-03-25
 
 
Corresponding author
Abderrahmane Nazih   

Laboratory of Food Technology, National Institute of Agronomic Research, CRRA Oujda, 10 Bd Mohamed VI, B.P. 428, Oujda 60000, Morocco, Morocco
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Germination can be considered an important process for modifying quinoa seeds’ nutritional and bioactive compounds. Understanding how germination modifies seed composition is essential to optimize their use in different food preparations and to meet the current trend for a healthy and balanced diet. The present study focuses on the effect of prolonged germination on the composition of quinoa seeds collected from a farm in the eastern Morocco. Seeds were germinated in a growth chamber with a controlled environment for different times (24, 48, 72, 96, and 120 h). At the end of each germination period, the seeds were dried and powdered, and their composition was analyzed. Powder obtained from ungerminated seeds was used as control. The results showed that germination led to a significant enhancement in the content of protein, fiber, total phenolics, and total flavonoids, with the highest increases observed at 96 h by 6.09 g/100 g dry matter (DM), 0.89 g/100 g DM, 50.27 mg/100 g DM, and 73.49 mg/100 g DM, respectively, compared to the control. Tocopherols (α, β, and δ) increased by 1.63, 1.21, and 2.67 µg/g of oil at 24 h, 72 h, and 120 h, respectively, compared to the control. Conversely, carbohydrate, energy, and saponin content decreased significantly relative to the control by 9.43–10.11 g/100 g DM (seeds sprouted for 72–96 h), 20.35 kcal/100 g DM (seeds sprouted for 72 h), and 0.58 g/100 g DM (seeds sprouted for 48 h and 72 h). This suggests that powder from germinated C. quinoa seeds subjected to prolonged germination (96 h) could be used as functional ingredients in food formulations, offering high levels of macronutrients, minerals, and bioactive compounds with a reduced saponin content.
ACKNOWLEDGEMENTS
The authors would like to thank the entire laboratory team at the National Institute of Agronomic Research of Berkane and the Laboratory of the Marchica Lagoon of Nador for Bio-Geo-Physical and Environmental Sciences (OLMAN-BGPE).
FUNDING
The author(s) received no financial support for the research, writing, and/or publication of this article.
CONFLICT OF INTEREST
The authors declare that they have no conflict of interest.
REFERENCES (68)
1.
Abedin, Md. J., Abdullah, A.T.M., Satter, M.A., Farzana, T. (2022). Physical, functional, nutritional and antioxidant properties of foxtail millet in Bangladesh. Heliyon, 8(10), art. no. e11186. https://doi.org/10.1016/j.heli....
 
2.
AFNOR (2002). AFNOR Standard: NF V04-407—September 2002: Determination of total nitrogen and calculation of protein content—Kjeldahl method.
 
3.
Aguilar, J., Miano, A.C., Obregón, J., Soriano-Colchado, J., Barraza-Jáuregui, G. (2019). Malting process as an alternative to obtain high nutritional quality quinoa flour. Journal of Cereal Science, 90, art. no. 102858. https://doi.org/10.1016/j.jcs.....
 
4.
Alvarez-Jubete, L., Wijngaard, H., Arendt, E.K., Gallagher, E. (2010). Polyphenol composition and in vitro antioxidant activity of amaranth, quinoa buckwheat and wheat as affected by sprouting and baking. Food Chemistry, 119(2), 770–778. https://doi.org/10.1016/j.food....
 
5.
AOAC (1990). Official Methods of Analysis (15th ed.). The Association of Official Analytical Chemist International, Washington DC., USA.
 
6.
AOAC (2005). Official Methods of Analysis. The Association of Official Analytical Chemists International. Gaithersburg, MD, USA.
 
7.
Balakrishnan, G., Schneider, R.G. (2023). Tocopherol degradation and lipid oxidation during storage of Chenopodium quinoa. Journal of Food Composition and Analysis, 123, art. no. 105549. https://doi.org/10.1016/j.jfca....
 
8.
Bertazzo, A., Comai, S., Brunato, I., Zancato, M., Costa, C.V.L. (2011). The content of protein and non-protein (free and protein-bound) tryptophan in Theobroma cacao beans. Food Chemistry, 124(1), 93–96. https://doi.org/10.1016/j.food....
 
9.
Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M., Nonogaki, H. (2013). Chapter 4 – Germination and Chapter 5 – Mobilization of Stored Reserves, In J.D. Bewley, K.J. Bradford, H.W.M. Hilhorst, H. Nonogaki (Eds.) Seeds: Physiology of Development, Germination and Dormancy, 3rd Edition. Springer New York, pp. 133-181 and pp. 182-246. https://doi.org/10.1007/978-1-....
 
10.
Bhinder, S., Kumari, S., Singh, B., Kaur, A., Singh, N. (2021). Impact of germination on phenolic composition, antioxidant properties, antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chemistry, 346, art. no. 128915. https://doi.org/10.1016/j.food....
 
11.
Carciochi, R.A., Galván-D’Alessandro, L., Vandendriessche, P., Chollet, S. (2016). Effect of germination and fermentation process on the antioxidant compounds of quinoa seeds. Plant Foods for Human Nutrition, 71(4), 361–367. https://doi.org/10.1007/s11130....
 
12.
Casalvara, R.F.A., Ferreira, B.M.R., Gonçalves, J.E., Yamaguchi, N.U., Bracht, A., Bracht, L., Comar, J.F., De Sá-Nakanishi, A.B., De Souza, C.G.M., Castoldi, R., Corrêa, R.C.G., Peralta, R.M. (2024). Biotechnological, nutritional, and therapeutic applications of quinoa (Chenopodium quinoa Willd.) and its by-products: A review of the past five-year findings. Nutrients, 16(6), art. no. 840. https://doi.org/10.3390/nu1606....
 
13.
Chaudhary, M., Singh, R., Chauhan, E.S., Panwar, B. (2024). Evaluating proximate, antinutrient, and antioxidant activity of raw and processed quinoa (Chenopodium quinoa Willd) flour and developing food products by incorporating them. Journal of Nutrition and Food Security, 9(3), 529-538. https://doi.org/10.18502/jnfs.....
 
14.
Choukr-Allah, R., Rao, N.K., Hirich, A., Shahid, M., Alshankiti, A., Toderich, K., Gill, S., Butt, K.U.R. (2016). Quinoa for marginal environments: Toward future food and nutritional security in MENA and Central Asia regions. Frontiers in Plant Science, 7, art. no. 00346 https://doi.org/10.3389/fpls.2....
 
15.
Codex Alimentarius (2019). Codex Alimentarius - Codex standard for quinoa—CXS 333 –2019, FAO, Roma, Italy, pp. 2–4.
 
16.
Darwish, A.M.G., Al‐ Jumayi, H.A.O., Elhendy, H.A. (2021). Effect of germination on the nutritional profile of quinoa (Cheopodium quinoa Willd.) seeds and its anti‐anemic potential in Sprague–Dawley male albino rats. Cereal Chemistry, 98(2), 315–327. https://doi.org/10.1002/cche.1....
 
17.
Devaraj, S., Leonard, S., Traber, M.G., Jialal, I. (2008). Gamma-tocopherol supplementation alone and in combination with alpha-tocopherol alters biomarkers of oxidative stress and inflammation in subjects with metabolic syndrome. Free Radical Biology and Medicine, 44(6), 1203–1208. https://doi.org/10.1016/j.free....
 
18.
Elkhalifa, A.E.O., Bernhardt, R. (2010). Influence of grain germination on functional properties of sorghum flour. Food Chemistry, 121(2), 387–392. https://doi.org/10.1016/j.food....
 
19.
FAO (2003). Food Energy—Methods of Analysis and Conversion Factors. Report of a Technical Workshop. FAO Food and Nutrition Paper 77, Rome, Italy.
 
20.
Ferreira, C.D.S., Piedade, M.T.F., Tiné, M.A.S., Rossatto, D.R., Parolin, P., Buckeridge, M.S. (2009). The role of carbohydrates in seed germination and seedling establishment of Himatanthus sucuuba, an Amazonian tree with populations adapted to flooded and non-flooded conditions. Annals of Botany, 104(6), 1111–1119. https://doi.org/10.1093/aob/mc....
 
21.
Gómez-Caravaca, A.M., Iafelice, G., Verardo, V., Marconi, E., Caboni, M.F. (2014). Influence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa Willd). Food Chemistry, 157, 174–178. https://doi.org/10.1016/j.food....
 
22.
Granado-Rodríguez, S., Aparicio, N., Matías, J., Pérez-Romero, L.F., Maestro, I., Gracés, I., Pedroche, J.J., Haros, C.M., Fernandez-Garcia, N., Navarro Del Hierro, J., Martin, D., Bolaños, L., Reguera, M. (2021a). Studying the impact of different field environmental conditions on seed quality of quinoa: The case of three different years changing seed nutritional traits in Southern Europe. Frontiers in Plant Science, 12, art. no. 649132. https://doi.org/10.3389/fpls.2....
 
23.
Granado-Rodríguez, S., Vilariño-Rodríguez, S., Maestro-Gaitán, I., Matías, J., Rodríguez, M.J., Calvo, P., Cruz, V., Bolaños, L., Reguera, M. (2021b). Genotype-dependent variation of nutritional quality-related traits in quinoa seeds. Plants, 10(10), art. no. 2128. https://doi.org/10.3390/plants....
 
24.
Granda, L., Rosero, A., Benešová, K., Pluháčková, H., Neuwirthová, J., Cerkal, R. (2018). Content of selected vitamins and antioxidants in colored and nonpigmented varieties of quinoa, barley, and wheat grains. Journal of Food Science, 83(10), 2439–2447. https://doi.org/10.1111/1750-3....
 
25.
Guardianelli, L.M., Salinas, M.V., Brites, C., Puppo, M.C. (2022). Germination of white and red quinoa seeds: Improvement of nutritional and functional quality of flours. Foods, 11(20), art. no. 3272. https://doi.org/10.3390/foods1....
 
26.
Jacobsen, S.-E., Mujica, A., Jensen, C.R. (2003). The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Reviews International, 19(1–2), 99–109. https://doi.org/10.1081/FRI-12....
 
27.
Jimenez, M.D., Lobo, M., Sammán, N. (2019). 12th IFDC 2017 Special Issue – Influence of germination of quinoa (Chenopodium quinoa) and amaranth (Amaranthus) grains on nutritional and techno-functional properties of their flours. Journal of Food Composition and Analysis, 84, art. no. 103290. https://doi.org/10.1016/j.jfca....
 
28.
Joy Ujiroghene, O., Liu, L., Zhang, S., Lu, J., Zhang, C., Lv, J., Pang, X., Zhang, M. (2019). Antioxidant capacity of germinated quinoa-based yoghurt and concomitant effect of sprouting on its functional properties. LWT – Food Science and Technology, 116, art. no. 108592. https://doi.org/10.1016/j.lwt.....
 
29.
Kajla, P.S., Sharma, A., Sood, D.R. (2017). Effect of germination on proximate principles, minerals and antinutrients of flaxseeds. Asian Journal of Dairy and Food Research, 36(1), 52-57. https://doi.org/10.18805/ajdfr....
 
30.
Kim, M.Y., Jang, G.Y., Lee, Y., Li, M., Ji, Y.M., Yoon, N., Lee, S.H., Kim, K.M., Lee, J., Jeong, H.S. (2016). Free and bound form bioactive compound profiles in germinated black soybean (Glycine max L.). Food Science and Biotechnology, 25(6), 1551–1559. https://doi.org/10.1007/s10068....
 
31.
Koziol, M.J. (1991). Afrosimetric estimation of threshold saponin concentration for bitterness in quinoa (Chenopodium quinoa Willd). Journal of the Science of Food and Agriculture, 54(2), 211–219. https://doi.org/10.1002/jsfa.2....
 
32.
Lan, Y., Wang, X., Wang, L., Zhang, W., Song, Y., Zhao, S., Yang, X., Liu, X. (2024). Change of physiochemical characteristics, nutritional quality, and volatile compounds of Chenopodium quinoa Willd. during germination. Food Chemistry, 445, art. no. 138693. https://doi.org/10.1016/j.food....
 
33.
Lan, Y., Zhang, W., Liu, F., Wang, L., Yang, X., Ma, S., Wang, Y., Liu, X. (2023). Recent advances in physiochemical changes, nutritional value, bioactivities, and food applications of germinated quinoa: A comprehensive review. Food Chemistry, 426, art. no. 136390. https://doi.org/10.1016/j.food....
 
34.
Ligarda-Samanez, C.A., Choque-Quispe, D., Moscoso-Moscoso, E., Huamán-Carrión, M.L., Ramos-Pacheco, B.S., Peralta-Guevara, D.E., Cruz, G.D.L., Martínez-Huamán, E.L., Arévalo-Quijano, J.C., Muñoz-Saenz, J.C., Muñoz-Melgarejo, M., Muñoz-Saenz, D.M., Aroni-Huamán, J. (2022). Obtaining and characterizing Andean multi-floral propolis nanoencapsulates in polymeric matrices. Foods, 11(20), art. no. 3153. https://doi.org/10.3390/foods1....
 
35.
Lim, J.G., Park, H., Yoon, K.S. (2020). Analysis of saponin composition and comparison of the antioxidant activity of various parts of the quinoa plant (Chenopodium quinoa Willd.). Food Science & Nutrition, 8(1), 694–702. https://doi.org/10.1002/fsn3.1....
 
36.
Mhada, M., Metougui, M.L., El Hazzam, K., El Kacimi, K., Yasri, A. (2020). Variations of saponins, minerals and total phenolic compounds due to processing and cooking of quinoa (Chenopodium quinoa Willd.) seeds. Foods, 9(5), art. no. 660. https://doi.org/10.3390/foods9....
 
37.
Mora-Ocación, M.S., Morillo-Coronado, A. Cruz., Manjarres-Hernández, E.H. (2022). Extraction and quantification of saponins in quinoa (Chenopodium quinoa Willd.) genotypes from Colombia. International Journal of Food Science, 2022, art. no. 1–7. https://doi.org/10.1155/2022/7....
 
38.
Nascimento, A.C., Mota, C., Coelho, I., Gueifão, S., Santos, M., Matos, A.S., Gimenez, A., Lobo, M., Samman, N., Castanheira, I. (2014). Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: Proximates, minerals and trace elements. Food Chemistry, 148, 420–426. https://doi.org/10.1016/j.food....
 
39.
Nazih, A., Baghour, M., Maatougui, A., Aboukhalid, K., Chiboub, B., Bazile, D. (2024). Effect of gibberellic acid and mechanical scarification on the germination and seedling stages of Chenopodium quinoa Willd. under salt stress. Plants, 13(10), art. no. 1330. https://doi.org/10.3390/plants....
 
40.
Nelson, K., Stojanovska, L., Vasiljevic, T., Mathai, M. (2013). Germinated grains: A superior whole grain functional food? Canadian Journal of Physiology and Pharmacology, 91(6), 429–441. https://doi.org/10.1139/cjpp-2....
 
41.
Nickel, J., Spanier, L.P., Botelho, F.T., Gularte, M.A., Helbig, E. (2016). Effect of different types of processing on the total phenolic compound content, antioxidant capacity, and saponin content of Chenopodium quinoa Willd grains. Food Chemistry, 209, 139–143. https://doi.org/10.1016/j.food....
 
42.
Nowak, V., Du, J., Charrondière, U.R. (2016). Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistry, 193, 47–54. https://doi.org/10.1016/j.food....
 
43.
Obizoba, I.C., Atii, J.V. (1991). Effect of soaking, sprouting, fermentation and cooking on nutrient composition and some anti-nutritional factors of sorghum (Guinesia) seeds. Plant Foods for Human Nutrition, 41(3), 203–212. https://doi.org/10.1007/BF0219....
 
44.
Ollivier, D., Boubault, E., Pinatel, C., Souillol, S., Guérère, M., Artaud, J. (2004). Phenols in virgin olive oils. Annales des Falsifications, de L’Expertise Chimique et Toxicologique, 965, 169-196 (in French, English abstract).
 
45.
Omary, M.B., Fong, C., Rothschild, J., Finney, P. (2012). Effects of germination on the nutritional profile of gluten‐free cereals and pseudocereals: A review. Cereal Chemistry, 89(1), 1–14. https://doi.org/10.1094/CCHEM-....
 
46.
Pachari Vera, E., Alca, J.J., Rondón Saravia, G., Callejas Campioni, N., Jachmanián Alpuy, I. (2019). Comparison of the lipid profile and tocopherol content of four Peruvian quinoa (Chenopodium quinoa Willd.) cultivars (‘Amarilla de Maranganí’, ‘Blanca de Juli’, INIA 415 ‘Roja Pasankalla’, INIA 420 ‘Negra Collana’) during germination. Journal of Cereal Science, 88, 132–137. https://doi.org/10.1016/j.jcs.....
 
47.
Pathan, S., Siddiqui, R.A. (2022). Nutritional composition and bioactive components in quinoa (Chenopodium quinoa Willd.) greens: A review. Nutrients, 14(3), art. no. 558. https://doi.org/10.3390/nu1403....
 
48.
Pellegrini, M., Lucas-Gonzales, R., Ricci, A., Fontecha, J., Fernández-López, J., Pérez-Álvarez, J.A., Viuda-Martos, M. (2018). Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Industrial Crops and Products, 111, 38–46. https://doi.org/10.1016/j.indc....
 
49.
Pilco-Quesada, S., Tian, Y., Yang, B., Repo-Carrasco-Valencia, R., Suomela, J.-P. (2020). Effects of germination and kilning on the phenolic compounds and nutritional properties of quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus). Journal of Cereal Science, 94, art. no. 102996. https://doi.org/10.1016/j.jcs.....
 
50.
Rafik, S., Rahmani, M., Rodriguez, J.P., Andam, S., Ezzariai, A., El Gharous, M., Karboune, S., Choukr-Allah, R., Hirich, A. (2021). How does mechanical pearling affect quinoa nutrients and saponin contents? Plants, 10(6), art. no. 1133. https://doi.org/10.3390/plants....
 
51.
Ramos-Pacheco, B.S., Choque-Quispe, D., Ligarda-Samanez, C.A., Solano-Reynoso, A.M., Palomino-Rincón, H., Choque-Quispe, Y., Peralta-Guevara, D.E., Moscoso-Moscoso, E., Aiquipa-Pillaca, Á.S. (2024). Effect of germination on the physicochemical properties, functional groups, content of bioactive compounds, and antioxidant capacity of different varieties of quinoa (Chenopodium quinoa Willd.) grown in the high Andean zone of Peru. Foods, 13(3), art. no. 417. https://doi.org/10.3390/foods1....
 
52.
Rao, D.S.S., Deosthale, Y.G. (1983). Mineral composition, ionisable iron and soluble zine in malted grains of pearl millet and ragi. Food Chemistry, 11(3), 217–223. https://doi.org/10.1016/0308-8....
 
53.
Rizvi, S., Raza, S.T., Ahmed, F., Ahmad, A., Abbas, S., Mahdi, F. (2014). The role of vitamin E in human health and some diseases. Sultan Qaboos University Medical Journal, 14(2), e157-165.
 
54.
Ruales, J., Nair, B.M. (1993). Content of fat, vitamins and minerals in quinoa (Chenopodium quinoa, Willd) seeds. Food Chemistry, 48(2), 131–136. https://doi.org/10.1016/0308-8....
 
55.
Ruiz, K.B., Khakimov, B., Engelsen, S.B., Bak, S., Biondi, S., Jacobsen, S.-E. (2017). Quinoa seed coats as an expanding and sustainable source of bioactive compounds: An investigation of genotypic diversity in saponin profiles. Industrial Crops and Products, 104, 156–163. https://doi.org/10.1016/j.indc....
 
56.
Ryynänen, M., Lampi, A.-M., Salo-Väänänen, P., Ollilainen, V., Piironen, V. (2004). A small-scale sample preparation method with HPLC analysis for determination of tocopherols and tocotrienols in cereals. Journal of Food Composition and Analysis, 17(6), 749–765. https://doi.org/10.1016/j.jfca....
 
57.
Shahidi, F., De Camargo, A. (2016). Tocopherols and tocotrienols in common and emerging dietary sources: Occurrence, applications, and health benefits. International Journal of Molecular Sciences, 17(10), art. no. 1745. https://doi.org/10.3390/ijms17....
 
58.
Suárez-Estrella, D., Borgonovo, G., Buratti, S., Ferranti, P., Accardo, F., Pagani, M.A., Marti, A. (2021). Sprouting of quinoa (Chenopodium quinoa Willd.): Effect on saponin content and relation to the taste and astringency assessed by electronic tongue. LWT – Food Science and Technology, 144, art. no. 111234. https://doi.org/10.1016/j.lwt.....
 
59.
Suárez-Estrella, D., Bresciani, A., Iametti, S., Marengo, M., Pagani, M.A., Marti, A. (2020). Effect of sprouting on proteins and starch in quinoa (Chenopodium quinoa Willd.). Plant Foods for Human Nutrition, 75(4), 635–641. https://doi.org/10.1007/s11130....
 
60.
Tang, Y., Li, X., Chen, P.X., Zhang, B., Liu, R., Hernandez, M., Draves, J., Marcone, M.F., Tsao, R. (2016). Assessing the fatty acid, carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. Journal of Agricultural and Food Chemistry, 64(5), 1103–1110. https://doi.org/10.1021/acs.ja....
 
61.
Tarasevičienė, Ž., Viršilė, A., Danilčenko, H., Duchovskis, P., Paulauskienė, A., Gajewski, M. (2019). Effects of germination time on the antioxidant properties of edible seeds. CyTA - Journal of Food, 17(1), 447–454. https://doi.org/10.1080/194763....
 
62.
Thakur, P., Kumar, K., Ahmed, N., Chauhan, D., Eain Hyder Rizvi, Q.U., Jan, S., Singh, T.P., Dhaliwal, H.S. (2021). Effect of soaking and germination treatments on nutritional, anti-nutritional, and bioactive properties of amaranth (Amaranthus hypochondriacus L.), quinoa (Chenopodium quinoa L.), and buckwheat (Fagopyrum esculentum L.). Current Research in Food Science, 4, 917–925. https://doi.org/10.1016/j.crfs....
 
63.
Torrez Irigoyen, R.M., Giner, S.A. (2018). Extraction kinetics of saponins from quinoa seed (Chenopodium quinoa Willd). International Journal of Food Studies, 7(2), 76–88. https://doi.org/10.7455/ijfs/7....
 
64.
Vega-Gálvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., Martínez, E.A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture, 90(15), 2541–2547. https://doi.org/10.1002/jsfa.4....
 
65.
Yadav, R., Gore, P.G., Gupta, V., Saurabh, Siddique, K.H.M. (2023). Chapter 2 – Quinoa (Chenopodium quinoa Willd.) – A smart crop for food and nutritional security. In M. Farooq, K.H.M. Siddique (Eds.), Neglected and Underutilized Crops, Elsevier, pp. 23–43. https://doi.org/10.1016/B978-0....
 
66.
Yang, N., Guo, X., Wu, Y., Hu, X., Ma, Y., Zhang, Y., Wang, H., Tang, Z. (2018). The inhibited seed germination by ABA and MeJA is associated with the disturbance of reserve utilizations in Astragalus membranaceus. Journal of Plant Interactions, 13(1), 388–397. https://doi.org/10.1080/174291....
 
67.
Zhou, X., Yue, T., Wei, Z., Yang, L., Zhang, L., Wu, B. (2023). Evaluation of nutritional value, bioactivity and mineral content of quinoa bran in China and its potential use in the food industry. Current Research in Food Science, 7, art. no. 100562. https://doi.org/10.1016/j.crfs....
 
68.
Žilić, S., Basić, Z., Hadži‐Tašković Šukalović, V., Maksimović, V., Janković, M., Filipović, M. (2014). Can the sprouting process applied to wheat improve the contents of vitamins and phenolic compounds and antioxidant capacity of the flour? International Journal of Food Science & Technology, 49(4), 1040–1047. https://doi.org/10.1111/ijfs.1....
 
eISSN:2083-6007
ISSN:1230-0322
Journals System - logo
Scroll to top