Search for Author, Title, Keyword
REVIEW ARTICLE
Unlocking the Potential of Buckwheat Hulls, Sprouts, and Extracts: Innovative Food Product Development, Bioactive Compounds, and Health Benefits – a Review
 
More details
Hide details
1
Department of Technology of Food Production and Biotechnology, Shakarim University, 20 A Glinki Str., Semey, 071142, Semey, Kazakhstan
 
2
Department of Standardization, Certification and Metrology, Eurasian National University, Kazakhstan
 
3
QPharm, Innovative Formulation Development, Cambridge, Ontario, Canada
 
4
Vocational School of Technical Sciences, Isparta University of Applied Sciences, Turkey
 
 
Submission date: 2024-04-22
 
 
Acceptance date: 2024-07-31
 
 
Online publication date: 2024-09-03
 
 
Publication date: 2024-09-03
 
 
Corresponding author
Zhibek Atambayeva   

Department of Technology of Food Production and Biotechnology, Shakarim University, 20 A Glinki Str., Semey, 071142, Semey, Kazakhstan
 
 
Pol. J. Food Nutr. Sci. 2024;74(3):293-312
 
KEYWORDS
TOPICS
ABSTRACT
This comprehensive review explores the underutilized buckwheat hulls, sprouts, and grain and sprout extracts, concentrating on their nutritional characteristics, health advantages, and possible uses in developing functional food products. Buckwheat, a pseudocereal, is emphasized for its impressive nutritional content, including high levels of dietary fiber, essential minerals, and vitamins, as well as bioactive compound content, such as phenolic acids and flavonoids mainly rutin. The paper discusses the significant antioxidant and antimicrobial properties of buckwheat hulls, sprouts, and extracts, which contribute to their utility in creating healthier, functional food products. Buckwheat sprouts are noted for their enhanced levels of antioxidants and nutrients compared to mature grains. Meanwhile, buckwheat hulls, traditionally seen as by-products, are identified as sources of dietary fiber and flavonoids, suitable for use in dietary supplements and functional foods. The extracts from these parts are rich in bioactive compounds that offer health-promoting effects. The possible effects of addition of buckwheat hulls, sprouts, and extracts to food products in terms of nutritional, textural, and sensory properties are also discussed. The review underscores the need for further research to optimize the use of buckwheat less-utilized parts and to better understand their health impacts. By highlighting the novel uses and health benefits of buckwheat hulls, sprouts, and extracts, the review contributes to the growing field of sustainable food practices and the development of functional foods.
FUNDING
This study received no external funding.
CONFLICT OF INTEREST
No potential conflict of interest was reported by the authors.
 
REFERENCES (120)
1.
Ahmed, A., Khalid, N., Ahmad, A., Abbasi, N.A., Latif, M.S.Z., Randhawa, M.A. (2014). Phytochemicals and biofunctional properties of buckwheat: A review. Journal of Agricultural Science, 152(3), 349–369. https://doi.org/10.1017/s00218....
 
2.
Ali, A.S., Elozeiri, A.A. (2017). Metabolic processes during seed germination. In J.C. Jimenez-Lopez (Ed.). Advances in Seed Biology. IntechOpen Lid, London, United Kingdom. https://doi.org/10.5772/intech....
 
3.
Al-Khayri, J.M., Sahana, G.R., Nagella, P., Joseph, B.V., Alessa, F.M., Al-Mssallem, M.Q. (2022). Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 27(9), art. no. 2901. https://doi.org/10.3390/molecu....
 
4.
Aloo, S.O., Ofosu, F.K., Oh, D.H. (2021). Effect of germination on alfalfa and buckwheat: Phytochemical profiling by UHPLC-ESI-QTOF-MS/MS, bioactive compounds, and in-vitro studies of their diabetes and obesity-related functions. Antioxidants, 10(10), art. no. 1613. https://doi.org/10.3390/antiox....
 
5.
Atambayeva, Zh., Nurgazezova, A., Assirzhanova, Zh., Urazbayev, Zh., Kambarova, A., Dautova, A., Idyryshev, B., Sviderskaya, D., Kaygusuz, M. (2023). Nutritional, physicochemical, textural and sensory characterization of horsemeat patties as affected by whole germinated green buckwheat and its flour. International Journal of Food Properties 26(1), 600-613. https://doi.org/10.1080/109429....
 
6.
Bączek, N., Haros, C.M., Wronkowska, M. (2023). Buckwheat hull, a valuable bakery product ingredient: assessment of bioaccessible phenolics and antioxidant capacity. European Food Research and Technology, 249(2), 353–358. https://doi.org/10.1007/s00217....
 
7.
Biel, W., Maciorowski, R. (2013). Evaluation of chemical composition and nutritional quality of buckwheat groat, bran and hull (Fagopyrum Esculentum Moench L.). Italian Journal of Food Science, 25(4), 384–389.
 
8.
Borgonovi, S.M., Chiarello, E., Pasini, F., Picone, G., Marzocchi, S., Capozzi, F., Bordoni, A., Barbiroli, A., Marti, A., Iametti, S., Di Nunzio, M. (2023). Effect of Sprouting on biomolecular and antioxidant features of common buckwheat (Fagopyrum esculentum). Foods, 12(10), art. no. 2047. https://doi.org/10.3390/foods1....
 
9.
Čabarkapa, I.S., Sedej, I.J., Sakač, M.B., Šarić, L.Č., Plavšić, D. (2008). Antimicrobial activity of buckwheat (Fagopyrum esculentum Moench) hulls extract. Food Processing, Quality and Safety, 35(4), 159-163.
 
10.
Cai, C., Cheng, W., Shi, T., Liao, Y., Zhou, M., Liao, Z. (2023). Rutin alleviates colon lesions and regulates gut microbiota in diabetic mice. Scientific Reports, 13(1), art. no. 4897. https://doi.org/10.1038/s41598....
 
11.
Cho, J., Moon, J., Kim, H., Ma, S., Kim, S., Jang, M., Kawazoe, K., Takaishi, Y., Park, K. (2006). Isolation and structural elucidation of antimicrobial compounds from buckwheat hull. Journal of Microbiology and Biotechnology, 16, 538-542.
 
12.
Cui, Y., Zhao, Z., Liu, Z., Liu, J., Piao, C., Liu, D. (2020). Purification and identification of buckwheat hull flavonoids and its comparative evaluation on antioxidant and cytoprotective activity in vitro. Food Science & Nutrition, 8(7), 3882-3892. https://doi.org/10.1002/fsn3.1....
 
13.
Dębski, H., Wiczkowski, W., Szawara-Nowak, D., Horbowicz, M. (2021). Elicitation with sodium silicate and iron chelate affects the contents of phenolic compounds and minerals in buckwheat sprouts. Polish Journal of Food and Nutrition Sciences, 71(1), 21-28. https://doi.org/10.31883/pjfns....
 
14.
Džafić, A., Oručević Žuljević, S. (2022). The Importance of buckwheat as a pseudocereal: Content and stability of its main bioactive components. In V. Y. Waisundara (Ed.), Pseudocereals. IntechOpen Ltd, London, United Kingdom. https://doi.org/10.5772/intech....
 
15.
Dziadek, K., Kopeć, A., Pastucha, E., Piątkowska, E., Leszczyńska, T., Pisulewska, E., Witkowicz, R., Francik, R. (2016). Basic chemical composition and bioactive compounds content in selected cultivars of buckwheat whole seeds, dehulled seeds and hulls. Journal of Cereal Science, 69, 1-8. https://doi.org/10.1016/j.jcs.....
 
16.
Dziedzic, K., Górecka, D., Kucharska, M., Przybylska, B. (2012). Influence of technological process during buckwheat groats production on dietary fibre content and sorption of bile acids. Food Research International, 47(2), 279–283. http://dx.doi.org/10.1016/j.fo....
 
17.
Dziedzic, K., Górecka, D., Szwengiel, A., Olejnik, A., Rychlik, J., Kreft, I., Drożdżyńska, A., Walkowiak, J. (2018). The cytotoxic effect of artificially digested buckwheat products on HT-29 colon cancer cells. Journal of Cereal Science, 83, 68-73. https://doi.org/10.1016/j.jcs.....
 
18.
Geiker, N.R.W., Bertram, H.C., Mejborn, H., Dragsted, L.O., Kristensen, L., Carrascal, J.R., Bügel, S., Astrup, A. (2021). Meat and human health – Current knowledge and research gaps. Foods, 10(7), art. no. 1556. https://doi.org/10.3390/foods1....
 
19.
Guan, Z.W., Yu, E.Z., Feng, Q. (2021). Soluble dietary fiber, one of the most important nutrients for the gut microbiota. Molecules, 26(22), art. no. 6802. https://doi.org/10.3390/molecu....
 
20.
Guo, Y.Z., Chen, Q.F., Yang, L.Y., Huang, Y.H. (2007). Analyses of the seed protein contents on the cultivated and wild buckwheat Fagopyrum esculentum resources. Genetic Resources and Crop Evolution, 54, 1465-1472. https://doi.org/10.1007/s10722....
 
21.
Gutiérrez, Á.L., Villanueva, M., Rico, D., Harasym, J., Ronda, F., Martín-Diana, A.B., Caballero, P.A. (2023). Valorisation of buckwheat by-product as a health-promoting ingredient rich in fibre for the formulation of gluten-free bread. Foods, 12(14), art. no. 2781. https://doi.org/10.3390/foods1....
 
22.
Guzmán-Ortiz, F.A., Castro-Rosas, J., Gómez-Aldapa, C.A., Mora-Escobedo, R., Rojas-León, A., Rodríguez-Marín, M.L., Falfán-Cortés, R.N., Román-Gutiérrez, A.D. (2019). Enzyme activity during germination of different cereals: A review. Food Reviews International, 35(3), 177–200. https://doi.org/10.1080/875591....
 
23.
Hęś, M., Górecka, D., Dziedzic, K. (2012). Antioxidant properties of extracts from buckwheat by-products. Acta Scientiarum Polonorum Technologia Alimentaria, 11(2), 167-174.
 
24.
Hęś, M., Szwengiel, A., Dziedzic, K., Thanh‐Blicharz, J.L., Kmiecik, D., Górecka, D. (2017). The effect of buckwheat hull extract on lipid oxidation in frozen‐stored meat products. Journal of Food Science, 82(4), 882–889. https://doi.org/10.1111/1750-3....
 
25.
Hosaka, T., Sasaga, S., Yamasaka, Y., Nii, Y., Edazawa, K., Tsutsumi, R., Shuto, E., Okahisa, N., Iwata, S., Tomotake, H., Sakai, T. (2014). Treatment with buckwheat bran extract prevents the elevation of serum triglyceride levels and fatty liver in KK-Ay mice. Journal of Medical Investigation, 61(3.4), 345–352. https://doi.org/10.2152/jmi.61....
 
26.
Hromádková, Z., Stavová, A., Ebringerová, A., Hirsch, J. (2007). Effect of buckwheat hull hemicelluloses addition on the bread-making quality of wheat flour. Journal of Food and Nutrition Research, 46(4), 158-166.
 
27.
Hua, X.Y., Sim, S.Y.J., Henry, C.J., Chiang, J.H. (2024). The extraction of buckwheat protein and its interaction with kappa-carrageenan: Textural, rheological, microstructural, and chemical properties. International Journal of Biological Macromolecules, 260(Part 1), art. no. 129427. https://doi.org/10.1016/j.ijbi....
 
28.
Ikeda, S., Yamashita, Y., Kreft, I. (1999). Mineral composition of buckwheat by-products and its processing characteristics to konjak preparation. Fagopyrum, 16, 89-94.
 
29.
Jha, R., Zhang, K., He, Y., Mendler-Drienyovszki, N., Magyar-Tábori, K., Quinet, M., Germ, M., Kreft, I., Meglič, V., Ikeda, K., Chapman, M.A., Janovská, D., Podolska, G., Woo, S.-H., Bruno, S., Georgiev, M.I., Chrungoo, N., Betekhtin, A., Zhou, M. (2024). Global nutritional challenges and opportunities: Buckwheat, a potential bridge between nutrient deficiency and food security. Trends in Food Science & Technology, 145, art. no. 104365, https://doi.org/10.1016/j.tifs....
 
30.
Ji, H., Tang, W., Zhou, X., Wu, Y. (2016). Combined effects of blue and ultraviolet lights on the accumulation of flavonoids in tartary buckwheat sprouts. Polish Journal of Food and Nutrition Sciences, 66(2), 93-98. https://doi.org/10.1515/pjfns-....
 
31.
Jin, H.R., Lee, S., Choi, S.J. (2020). Pharmacokinetics and protective effects of tartary buckwheat flour extracts against ethanol-induced liver injury in rats. Antioxidants, 9(10), art. no. 913. https://doi.org/10.3390/antiox....
 
32.
Jin, J., Ohanenye, I.C., Udenigwe, C.C. (2022). Buckwheat proteins: Functionality, safety, bioactivity, and prospects as alternative plant-based proteins in the food industry. Critical Reviews in Food Science and Nutrition, 62(7), 1752–1764. https://doi.org/10.1080/104083....
 
33.
Jing, Y., Li, X., Hu, X., Ma, Z., Liu, L., Ma, X. (2019). Effect of buckwheat extracts on acrylamide formation and the quality of bread. Journal of the Science of Food and Agriculture, 99(14), 6482-6489. https://doi.org/10.1002/jsfa.9....
 
34.
Kan, J., Cao, M., Chen, C., Gao, M., Zong, S., Zhang, J., Liu, J., Tang, C., Jin, C. (2023). In vitro antioxidant and lipid-lowering properties of free and bound phenolic compounds from buckwheat hulls. Food Bioscience, 53, art. no. 102725. https://doi.org/10.1016/j.fbio....
 
35.
Kang, L., Luo, J., Su, Z., Zhou, L., Xie, Q., Li, G. (2024). Effect of sprouted buckwheat on glycemic index and quality of reconstituted rice. Foods, 13(8), art. no. 1148. https://doi.org/10.3390/foods1....
 
36.
Karki, R., Park, C.H., Kim, D.W. (2013). Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7). Journal of Integrative Medicine, 11(4), 246-252. https://doi.org/10.3736/jinteg....
 
37.
Kim, D.E., Hong, S.Y., Kang, W.S., C.Y., Yu, Lee, B.G., Chung, I.M., Lim, J.D. (2009a). Influence of extrusion on dietary fiber profile and bioactive compound in different parts of tartary buckwheat (Fagopyrum tataricum). Korean Journal of Medicinal Crop Science, 17(6), 379-387.
 
38.
Kim, D.W., Hwang, I.K., Lim, S.S., Yoo, K.Y., Li, H., Kim, Y.S., Kwon, D.Y., Moon, W.K., Kim, D.W., Won, M.H. (2009b). Germinated buckwheat extract decreases blood pressure and nitrotyrosine immunoreactivity in aortic endothelial cells in spontaneously hypertensive rats. Phytotherapy Research, 23(7), 993-998. https://doi.org/10.1002/ptr.27....
 
39.
Kim, S., Kim, S., Park, C. (2004). Introduction and nutritional evaluation of buckwheat sprouts as a new vegetable. Food Research International, 37(4), 319-327. https://doi.org/10.1016/J.FOOD....
 
40.
Kim, S.H., Cui, C.B., Kang, I.J., Kim, S.Y., Ham, S.S. (2007a). Cytotoxic effect of buckwheat (Fagopyrum esculentum Moench) hull against cancer cells. Journal of Medicinal Food, 10(2), 232-238. https://doi.org/10.1089/jmf.20....
 
41.
Kim, S.J., Maeda, T., Sarker, M.Z.I., Takigawa, S., Matsuura-Endo, C., Yamauchi, H., Mukasa, Y., Saito, K., Hashimoto, N., Noda, T., Saito, T., Suzuki, T. (2007b). Identification of anthocyanins in the sprouts of buckwheat. Journal of Agricultural and Food Chemistry, 55(15), 6314-6318. https://doi.org/10.1021/jf0704....
 
42.
Kim, S.L., Son, Y.K., Hwang, J.J., Kim, S.K., Hur, H.S., Park, C.H. (2001). Development and utilization of buckwheat sprouts as functional vegetables. Fagopyrum, 18, 49–54.
 
43.
Kim, Y.S., Kim, J.G., Lee, Y.S., Kang, I.J. (2005). Comparison of the chemical components of buckwheat seed and sprout. Journal of the Korean Society of Food Science and Nutrition, 34(1), 81-86 (in Korean). https://doi.org/10.3746/jkfn.2....
 
44.
Koyama, M., Naramoto, K., Nakajima, T., Aoyama, T., Watanabe, M., Nakamura, K. (2013). Purification and identification of antihypertensive peptides from fermented buckwheat sprouts. Journal of Agricultural and Food Chemistry, 61(12), 3013–3021. https://doi.org/10.1021/jf3051....
 
45.
Kreft, I., Germ, M., Golob, A., Vombergar, B., Bonafaccia, F., Luthar, Z. (2022). Impact of rutin and other phenolic substances on the digestibility of buckwheat grain metabolites. International Journal of Molecular Sciences, 23(7), art. no. 3923. https://doi.org/10.3390/ijms23....
 
46.
Kuwabara, T., Han, K.H., Hashimoto, N., Yamauchi, H., Shimada, K.I., Sekikawa, M., Fukushima, M. (2007). Tartary buckwheat sprout powder lowers plasma cholesterol level in rats. Journal of Nutritional Science and Vitaminology, 53(6), 501-507. https://doi.org/10.3177/jnsv.5....
 
47.
Kuznetsova, E., Uchasov, D., Kuznetsova, O., Elena Kuznetsova, Bychkova, T., Brindza, J. (2020). The use of high-performance liquid chromatography (HPLC) to assess the antioxidant activity of buckwheat husk and indicators of the oxidant-antioxidant system of laboratory animals. In SPBPU DTMIS '20: Proceedings of Peter the Great St. Petersburg Polytechnic University International Scientific Conference “Digital Transformation on Manufacturing, Infrastructure and Service”, November 18–19, Saint – Petersburg, Russia. ACM, New York, NY, USA, art. no. 100. https://doi.org/10.1145/344643....
 
48.
Lee, E.H., Kim, C.J. (2008). Nutritional changes of buckwheat during germination. Korean Journal of Food Culture, 23, 121–129.
 
49.
Lee, H., Lim, T., Kim, J., Kim, R.H., Hwang, K.T. (2022). Phenolics in buckwheat hull extracts and their antioxidant activities on bulk oil and emulsions. Journal of Food Science, 87(7), 2831-2846. https://doi.org/10.1111/1750-3....
 
50.
Lee, H.S., Park, C.H., Park, B.J., Kwon, S.M., Chang, K.J., Kim, S.L. (2006). Rutin, catechin derivatives, and chemical components of tartary buckwheat (Fagopyrum tataricum Gaerth.) Sprouts. Korean Journal of Crop Science, 51(S), 277-282.
 
51.
Lee, S.G., Lee, D., Kang, H. (2017). Hypocholesterolemic effect of tartary buckwheat (F. tataricum Gaertn.) extract from high fat diet mice. Biomedical Science Letters, 23, 34-38. https://doi.org/10.15616/BSL.2....
 
52.
Li, F., Yuan, Y., Yang, X., Tao, S., Ming, J. (2013). Phenolic profiles and antioxidant activity of buckwheat (Fagopyrum esculentum Möench and Fagopyrum tartaricum L. Gaerth) hulls, brans and flours. Journal of Integrative Agriculture, 12(9), 1684-1693. https://doi.org/10.1016/S2095-....
 
53.
Lim, J.H., Park, K.J., Kim, B.K., Jeong, J.W., Kim, H.J. (2012). Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chemistry, 135(3), 1065–1070. https://doi.org/10.1016/j.food....
 
54.
Lin, L.Y., Peng, C.C., Yang, Y.L., Peng, R.Y. (2008). Optimization of bioactive compounds in buckwheat sprouts and their effect on blood cholesterol in hamsters. Journal of Agricultural and Food Chemistry, 56(4), 1216-1223. https://doi.org/10.1021/jf0728....
 
55.
Liu, C., Chen, Y., Yang, J., Chiang, B. (2008). Antioxidant activity of tartary (Fagopyrum tataricum (L.) Gaertn.) and common (Fagopyrum esculentum Moench) buckwheat sprouts. Journal of Agricultural and Food Chemistry, 56(1), 173-178. https://doi.org/10.1021/JF0723....
 
56.
Liu, D., Song, S., Tao, L., Yu, L., Wang, J. (2022). Effects of common buckwheat bran on wheat dough properties and noodle quality compared with common buckwheat hull. LWT – Food Science and Technology, 155, art. no. 112971. https://doi.org/10.1016/j.lwt.....
 
57.
Lu, L., Murphy, K., Baik, B.K. (2013). Genotypic variation in nutritional composition of buckwheat groats and husks. Cereal Chemistry, 90(2), 132-137. https://doi.org/10.1094/CCHEM-....
 
58.
Luthar, Z., Zhou, M., Golob, A., Germ, M. (2021). Breeding buckwheat for increased levels and improved quality of protein. Plants (Basel), 10(1), art. no. 14. https://doi.org/10.3390/plants....
 
59.
Mansur, A.R., Lee, S.G., Lee, B.H., Han, S.G., Choi, S.W., Song, W.J., Nam, T.G. (2022). Phenolic compounds in common buckwheat sprouts: composition, isolation, analysis and bioactivities. Food Science and Biotechnology, 31(8), 935-956. https://doi.org/10.1007/s10068....
 
60.
Martillanes, S., Rocha-Pimienta, J., Cabrera-Bañegil, M., Martín-Vertedor, D., Delgado-Adámez, J. (2017). Application of phenolic compounds for food preservation: Food additive and active packaging. In M. Soto-Hernandez, M. Palma-Tenango, M. del Rosario Garcia-Mateos (Eds.), Phenolic Compounds — Biological Activity; IntechOpen Ltd, London, United Kingdom, pp. 39–58. https://doi.org/10.5772/66885.
 
61.
Matseychik, I.V., Korpacheva, S.M., Lomovsky, I.O., Serasutdinova, K.R. (2021). Influence of buckwheat by-products on the antioxidant activity of functional desserts. IOP Conference Series: Earth and Environmental Science, 640, art. no. 22038. https://doi.org/10.1088/1755-1....
 
62.
Matsumura, Y., Kitabatake, M., Kayano, S.I., Ito, T. (2023). Dietary phenolic compounds: their health benefits and association with the gut microbiota. Antioxidants, 12(4), art. no. 880. https://doi.org/10.3390/antiox....
 
63.
Mazahir, M., Ahmed, A., Ahmad, A., Ahmad, M.S., Khan, M.A., Manzoor, M.F. (2022). Extraction and determination of bioactive compounds and antioxidant activity of buckwheat seed milling fractions. Food Science & Technology, 42, art. no. e81721. https://doi.org/10.1590/fst.81....
 
64.
Melini, V., Vescovo, D., Melini, F., Raffo, A. (2024). Bakery product enrichment with phenolic compounds as an unexplored strategy for the control of the Maillard reaction. Applied Sciences, 14(6), art. no. 2647. https://doi.org/10.3390/app140....
 
65.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G. (2009). The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), art. no. e1000097. https://doi.org/10.1371/journa....
 
66.
Molska, M., Reguła, J., Kapusta, I., Świeca, M. (2022a). Analysis of phenolic compounds in buckwheat (Fagopyrum Esculentum Moench) sprouts modified with probiotic yeast. Molecules, 27(22), art. no. 7773. https://doi.org/10.3390/molecu....
 
67.
Molska, M., Regula, J., Rudzińska, M., Świeca, M. (2020). Fatty acid profile, atherogenic and thrombogenic health lipid indices of lyophilized buckwheat sprouts modified with the addition of Saccharomyces cerevisae var. Boulardii. Acta Scientiarum Polonorum Technologia Alimentaria, 19(4), 483–490. http://dx.doi.org/10.17306/J.A....
 
68.
Molska, M., Reguła, J., Świeca, M. (2023). Adding modified buckwheat sprouts to an atherogenic diet — the effect on selected nutritional parameters in rats. Plant Foods for Human Nutrition, 78, 279–285. https://doi.org/10.1007/s11130....
 
69.
Molska, M., Reguła, J., Zielińska-Dawidziak, M., Tomczak, A., Świeca, M. (2022b). Starch and protein analysis in buckwheat (Fagopyrum esculentum Moench) sprouts enriched with probiotic yeast. LWT – Food Science and Technology, 168, art. no. 113903. https://doi.org/10.1016/j.lwt.....
 
70.
Nandan, A., Koirala, P., Tripathi, A.D., Vikranta, U., Shah, K., Gupta, A.J., Agarwal, A., Nirmal, N. (2024). Nutritional and functional perspectives of pseudocereals, Food Chemistry, 448, art. no. 139072. https://doi.org/10.1016/j.food....
 
71.
Nobili, C., De Acutis, A., Reverberi, M., Bello, C., Leone, G.P., Palumbo, D., Natella, F., Procacci, S., Zjalic, S., Brunori, A. (2019). Buckwheat hull extracts inhibit Aspergillus flavus growth and AFB1 biosynthesis. Frontiers in Microbiology, 10, art. no. 01997. https://doi.org/10.3389/fmicb.....
 
72.
Park, B.I., Kim, J., Lee, K., Lim, T., Hwang, K.T. (2019). Flavonoids in common and tartary buckwheat hull extracts and antioxidant activity of the extracts against lipids in mayonnaise. Journal of Food Science and Technology, 56(5), 2712-2720. https://doi.org/10.1007/s13197....
 
73.
Peng, C.C., Chen, K.C., Yang, Y.L., Lin, L.Y., Peng, R.Y. (2009). Aqua-culture improved buckwheat sprouts with more abundant precious nutrients and hypolipidemic activity. International Journal of Food Sciences and Nutrition, 60(Suppl. 1), 232-245. https://doi.org/10.1080/096374....
 
74.
Pietrzak, D., Zwolan, A., Chmiel, M., Adamczak, L., Cegiełka, A., Hać-Szymańczuk, E., Ostrowska-Ligȩza, E., Florowski, T., Oszmiański, J. (2022). The effects of extracts from buckwheat hulls on the quality characteristics of chicken meatballs during refrigerated storage. Applied Sciences, 12(19) art. no. 9612. https://doi.org/10.3390/app121....
 
75.
Pirzadah, T.B., Malik, B. (2020). Pseudocereals as super foods of 21st century: Recent technological interventions. Journal of Agriculture and Food Research, 2, art. no. 100052, https://doi.org/10.1016/j.jafr....
 
76.
Pongrac, P., Vogel-Mikuš, K., Potisek, M., Kovačec, E., Budič, B., Kump, P., Regvar, M., Kreft, I. (2016). Chapter 20 – Mineral and trace element composition and importance for nutritional value of buckwheat grain, groats, and sprouts. In M. Zhou, S.H. Woo, G. Wieslander, I. Kreft, N. Chrungoo (Eds.), Molecular Breeding and Nutritional Aspects of Buckwheat. Academic Press, Cambridge, Massachusetts, United States, pp. 261–271. https://doi.org/10.1016/b978-0....
 
77.
Qing, L., Li, S., Yan, S., Wu, C., Yan, X., He, Z., Chen, Q., Huang, M., Shen, C., Wang, S., Cao, M., Zhao, J. (2023). Anti‐Helicobacter pylori activity of Fagopyrum Tataricum (L.) Gaertn. bran flavonoids extract and its effect on Helicobacter pylori‐induced inflammatory response. Food Science & Nutrition, 11(6), 3394-3403. https://doi.org/10.1002/fsn3.3....
 
78.
Rauf, M., Yoon, H., Lee, S., Hyun, D.Y., Lee, M., Oh, S., Choi, Y.M. (2019). Evaluation of sprout growth traits and flavonoid content in common and tartary buckwheat germplasms. Plant Breeding and Biotechnology, 7, 375-385. https://doi.org/10.9787/PBB.20....
 
79.
Rethlefsen, M.L., Kirtley, S., Waffenschmidt, S., Ayala, A.P., Moher, D., Page, M.J., Koffel, J.B., PRISMA-S Group. (2021). PRISMA-S: An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Systematic Reviews, 10, art. no. 39. https://doi.org/10.1186/s13643....
 
80.
Salejda, A.M., Olender, K., Zielińska-Dawidziak, M., Mazur, M., Szperlik, J., Miedzianka, J., Zawiślak, I., Kolniak-Ostek, J., Szmaja, A. (2022). Frankfurter-type sausage enriched with buckwheat by-product as a source of bioactive compounds. Foods, 11(5), art. no. 674. https://doi.org/10.3390/foods1....
 
81.
Sedej, I., Sakač, M., Mandić, A., Mišan, A., Tumbas, V., Čanadanović‐Brunet, J. (2012). Buckwheat (Fagopyrum esculentum Moench) grain and fractions: Antioxidant compounds and activities. Journal of Food Science, 77(9), C954-C959. https://doi.org/10.1111/j.1750....
 
82.
Serikbaeva, A., Tnymbaeva, B., Mardar, M., Tkachenko, N., Ibraimova, S., Uazhanova, R. (2021). Determining optimal process parameters for sprouting buckwheat as a base for a food seasoning of improved quality. Eastern-European Journal of Enterprise Technologies, 4(11(112)), 6-16. https://doi.org/10.15587/1729-....
 
83.
Shahidi., F, Ambigaipalan, P. (2018). Omega-3 polyunsaturated fatty acids and their health benefits. Annual Review of Food Science and Technology, 9, 345-81. https://doi.org/10.1146/annure....
 
84.
Shreeja, K., Devi, S., Suneetha, W.J., Prabhakar, B.N. (2021). Effect of germination on nutritional composition of common buckwheat (Fagopyrum Esculentum Moench). International Research Journal of Pure and Applied Chemistry, 22(1), 1-7. https://doi.org/10.9734/irjpac....
 
85.
Sturza, A., Păucean, A., Chiș, M.S., Mureșan, V., Vodnar, D.C., Man, S.M., Urcan, A.C., Rusu, I.E., Fostoc, G., Muste, S. (2020). Influence of buckwheat and buckwheat sprouts flours on the nutritional and textural parameters of wheat buns. Applied Sciences, 10(22), art. no. 7969. https://doi.org/10.3390/app102....
 
86.
Sujka, K., Cacak-Pietrzak, G., Sułek, A., Murgrabia, K., Dziki, D. (2022). Buckwheat hull-enriched pasta: Ohysicochemical and sensory properties. Molecules, 27(13), art. no. 4065. https://doi.org/10.3390/molecu....
 
87.
Sun, T., Ho, C. (2005). Antioxidant activities of buckwheat extracts. Food Chemistry, 90(4), 743-749. https://doi.org/10.1016/J.FOOD....
 
88.
Sytar, O., Brestic, M., Zivcak, M., Tran, L.S. (2016). The contribution of buckwheat genetic resources to health and dietary diversity. Current Genomics, 17(3), 193-206. https://doi.org/10.2174/138920....
 
89.
Teng, J., Hu, X., Tao, N., Wang, M. (2018). Impact and inhibitory mechanism of phenolic compounds on the formation of toxic Maillard reaction products in food. Frontiers of Agricultural Science and Engineering, 5(3), 321-329. https://doi.org/10.15302/J-FAS....
 
90.
Tsai, H., Deng, H., Tsai, S., Hsu, Y. (2012). Bioactivity comparison of extracts from various parts of common and tartary buckwheats: Evaluation of the antioxidant- and angiotensin-converting enzyme inhibitory activities. Chemistry Central Journal, 6, art. no. 78. https://doi.org/10.1186/1752-1....
 
91.
Uzakov, Y., Kaldarbekova, M., Kuznetsova, O. (2020). Improved technology for new-generation Kazakh national meat products. Foods and Raw Materials, 8(1), 76–83. https://doi.org/10.21603/2308-....
 
92.
Wang, H., Liu, S., Cui, Y., Wang, Y., Guo, Y., Wang, X., Liu, J., Piao, C. (2021). Hepatoprotective effects of flavonoids from common buckwheat hulls in type 2 diabetic rats and HepG2 cells. Food Science & Nutrition, 9(9), 4793-4802. https://doi.org/10.1002/fsn3.2....
 
93.
Wang, J., Ma, H., Wang, S. (2019). Application of ultrasound, microwaves, and magnetic fields techniques in the germination of cereals. Food Science and Technology Research, 25(4), 489-497. https://doi.org/10.3136/fstr.2....
 
94.
Wang, L., Li, Y., Guo, Z., Wang, H., Wang, A., Li, Z., Chen, Y., Qiu, J. (2023). Effect of buckwheat hull particle-size on bread staling quality. Food Chemistry, 405(Part A), art. no. 134851. https://doi.org/10.1016/j.food....
 
95.
Wiczkowski, W., Szawara-Nowak, D., Dębski, H., Mitrus, J., Horbowicz, M. (2014). Comparison of flavonoids profile in sprouts of common buckwheat cultivars and wild tartary buckwheat. International Journal of Food Science & Technology, 49(9), 1977-1984. https://doi.org/10.1111/ijfs.1....
 
96.
Witkowicz, R., Biel, W. (2022). A novel method for analyzing mineral ratio profiles of treated buckwheat sprouts (Fagopyrum esculentum Moench). Journal of Food Composition and Analysis, 114, art. no. 104800. https://doi.org/10.1016/j.jfca....
 
97.
Witkowicz, R., Biel, W., Chłopicka, J., Galanty, A., Gleń-Karolczyk, K., Skrzypek, E., Krupa, M. (2019). Biostimulants and Microorganisms Boost the Nutritional Composition of Buckwheat (Fagopyrum esculentum Moench) Sprouts. Agronomy, 9, 469. https://doi.org/10.3390/agrono....
 
98.
Woo, S.H., Kamal, A.H.M., Park, S.M., Kwon, S.O., Park, S.U., Roy, S.K., Lee, J.Y., Choi, J.S. (2013). Relative distribution of free amino acids in buckwheat. Food Science and Biotechnology, 22, 665–669. https://doi.org/10.1007/s10068....
 
99.
Wronkowska, M., Bączek, N., Honke, J., Topolska, J., Wiczkowski, W., Zieliński, H. (2023). Wheat roll enhanced by buckwheat hull, a new functional food: focus on the retention of bioactive compounds. Molecules, 28(11), art. no. 4565. https://doi.org/10.3390/molecu....
 
100.
Wronkowska, M., Zieliński, H., Szmatowicz, B., Ostaszyk, A., Lamparski, G., Majkowska, A. (2019). Effect of roasted buckwheat flour and hull enrichment on the sensory qualities, acceptance and safety of innovative mixed rye/wheat and wheat bakery products. Journal of Food Processing and Preservation, 43, art. no. e14025. http://dx.doi.org/10.1111/jfpp....
 
101.
Wu, D.T., Wang, J., Li, J., Hu, J.L., Yan, H., Zhao, J., Zou, L., Hu, Y.C. (2023). Physicochemical properties and biological functions of soluble dietary fibers isolated from common and Tartary buckwheat sprouts. LWT – Food Science and Technology, 183, art. no. 114944. https://doi.org/10.1016/j.lwt.....
 
102.
Xu, F.Y., Gao, Q.H., Ma, Y.J., Guo, X.D., Wang, M. (2014). Tartary buckwheat flour and sprouts steamed bread. Journal of Food Quality, 37, 318-328. https://doi.org/10.1111/jfq.12....
 
103.
Yang, J., Zamani, S., Liang, L., Chen, L. (2021). Extraction methods significantly impact pea protein composition, structure and gelling properties. Food Hydrocolloids, 117, art. no. 106678, https://doi.org/10.1016/j.food....
 
104.
Yang, X., Zhou, Y., Wang, B., Wang, F., Han, P., Li, L. (2019). Tartary buckwheat extract and chitosan coated tilapia (Oreochromis niloticus) fillets determine their shelf life. Journal of Food Science, 84(6), 1288–1296. https://doi.org/10.1111/1750-3....
 
105.
Yilmaz, H.Ö., Ayhan, N.Y., Meriç, Ç.S. (2020). Buckwheat: A useful food and its effects on human health. Current Nutrition & Food Science, 16(1), 29-34. https://doi.org/10.2174/157340....
 
106.
Zhang, G., Xu, Z., Gao, Y., Huang, X., Zou, Y., Yang, T. (2015). Effects of germination on the nutritional properties, phenolic profiles, and antioxidant activities of buckwheat. Journal of Food Science, 80(5), H1111-H1119. https://doi.org/10.1111/1750-3....
 
107.
Zhang, W., Zhu, Y., Liu, Q., Bao, J., Liu, Q. (2017). Identification and quantification of polyphenols in hull, bran and endosperm of common buckwheat (Fagopyrum esculentum) seeds. Journal of Functional Foods, 38(Part A), 363-369. https://doi.org/10.1016/j.jff.....
 
108.
Zhang, Z., Fan, S., Duncan, G.J., Morris, A., Henderson, D., Morrice, P., Russell, W.R., Duncan, S.H., Neacsu, M. (2023). Buckwheat (Fagopyrum esculentum) hulls are a rich source of fermentable dietary fibre and bioactive phytochemicals. International Journal of Molecular Sciences, 24(12), art. no. 16310. https://doi.org/10.3390/ijms24....
 
109.
Zhao, Z.Y., Piao, C.H., Wang, Y.H., Liu, J.M., Yu, H.S., Dai, W.C., Tang, Y.F., Wang, J., Liu, D.L. (2018). Isolation and anti‐diabetic activity in vitro of flavonoids from buckwheat hull. Food Science, 39(3), 21-27 (in Chinese: English abstract). https://doi.org/10.7506/spkx10....
 
110.
Zhong, L., Lin, Y., Wang, C., Niu, B., Xu, Y., Zhao, G., Zhao, J. (2022). Chemical profile, antimicrobial and antioxidant activity assessment of the crude extract and its main flavonoids from tartary buckwheat sprouts. Molecules, 27(2), art. no. 374. https://doi.org/10.3390/molecu....
 
111.
Zieliński, H., Honke, J., Bączek, N., Majkowska, A., Wronkowska, M. (2019). Bioaccessibility of D-chiro inositol from water biscuits formulated from buckwheat flours fermented by lactic acid bacteria and fungi. LWT – Food Science & Technology, 106, 37-43. https://doi.org/10.1016/j.lwt.....
 
112.
Zhou, M., Wieslander, G., Tang, Y., Tang, Y., Shao, J., Wu, Y. (2016). Chapter 11 – Bioactive compounds in buckwheat sprouts. In M. Zhou, I. Kreft, S.H. Woo, N. Chrungoo, G. Wieslander (Eds.), Molecular Breeding and Nutritional Aspects of Buckwheat, Academic Press, Cambridge, Massachusetts, United States pp. 151-159. https://doi.org/10.1016/B978-0....
 
113.
Znamirowska, A., Sajnar, K., Kowalczyk, M., Kluz, M., Buniowska, M. (2020). Effect of addition of spelt and buckwheat hull on selected properties of yoghurt. Journal of Microbiology, Biotechnology and Food Sciences, 10(2), 296-300. https://doi.org/10.15414/jmbfs....
 
114.
Zhou, X., Cheng, Sh., Yang, Y., Zhou, Y., Tang, W., Zhang, X., Wang, Q., Li, Z. (2011a). Toward a novel understanding of buckwheat self-defensive strategies during seed germination and preliminary investigation on the potential pharmacological application of its malting products. Journal of Medicinal Plants Research, 5(32), 6946-6954. https://doi.org/10.5897/JMPR11....
 
115.
Zych-Wężyk, I., Krzepiłko, A. (2012). Determination of total phenolic compound content and antioxidant properties of edible buckwheat sprouts. Ecological Chemistry and Engineering A, 19(4-5), 441-449. https://doi.org/10.2428/ecea.2....
 
116.
Zhou, X., Wang, Q., Yang, Y., Zhou, Y., Tang, W., Li, Z. (2011b). Anti-infection effects of buckwheat flavonoid extracts (BWFEs) from germinated sprouts. Journal of Medicinal Plants Research, 6(1), 24-29. https://doi.org/10.5897/JMPR11....
 
117.
Zhou, X.L., Chen, Z.D., Zhou, Y.M., Shi, R.H., Li, Z.J. (2019). The effect of tartary buckwheat flavonoids in inhibiting the proliferation of MGC80-3 cells during seed germination. Molecules, 24(17), art. no. 3092. https://doi.org/10.3390/molecu....
 
118.
Zhou, Y., Wang, H., Cui, L., Zhou, X., Tang, W., Song, X. (2015). Evolution of nutrient ingredients in tartary buckwheat seeds during germination. Food Chemistry, 186, 244-248. https://doi.org/10.1016/j.food....
 
119.
Zhu, F. (2021). Buckwheat proteins and peptides: biological functions and food applications. Trends in Food Science & Technology, 110, 155–167. https://doi.org/10.1016/j.tifs....
 
120.
Zielińska, D., Szawara-Nowak, D., Zieliński, H. (2013). Antioxidative and anti-glycation activity of buckwheat hull tea infusion. International Journal of Food Properties, 16(1), 228-239. https://doi.org/10.1080/109429....
 
eISSN:2083-6007
ISSN:1230-0322
Journals System - logo
Scroll to top