Search for Author, Title, Keyword
Compositional Characteristics and Antioxidant Activity of Edible Rose Flowers and Their Effect on Phenolic Urinary Excretion
More details
Hide details
Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco (TO), Italy
Department of Psychology, University of Turin, Via Verdi 10, 10124, Turin, Italy
Azienda Ospedaliera Universitaria Città della Salute e della Scienza di Turin, Corso Bramante 88, 10126, Turin, Italy
Submission date: 2021-04-14
Final revision date: 2021-09-01
Acceptance date: 2021-09-28
Online publication date: 2021-10-27
Publication date: 2021-10-27
Corresponding author
Sonia Demasi   

Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco (TO), Italy
Pol. J. Food Nutr. Sci. 2021;71(4):383-392
Petals of edible flowers (EF) are rich in biologically active compounds with many proven benefits for human health. However, studies on the effects of EF in humans after consumption are lacking. This pilot explorative study evaluated the changes in urinary phenolic excretion in healthy volunteers to whom different doses of phenolics from edible roses (Gourmet Roses™) have been added to a meal. Rose petals were picked fresh once a week for three weeks, showing significantly increasing values of total phenolic content, total anthocyanin content, and antioxidant activity (measured as ferric reducing antioxidant power (FRAP) and as DPPH and ABTS•+ scavenging activities) from the first to the third week. After the meal, direct associations between urinary phenolics and both the EF phenolic content and the antioxidant activity were found in a multiple regression model. These new insights on EF consumption, to be confirmed by larger trials, suggest that the urinary phenolic excretion of healthy volunteers increases with increasing rose phenolic content.
Authors thank RZero Group s.r.l. for providing rose flowers, and Mina Novello for suggesting the recipes.
This research was partially funded by the program Interreg V-A Francia Italia Alcotra, project n. 1139 “ANTEA - Attività innovative per lo sviluppo della filiera transfrontaliera del fiore edule”.
Agudo, A., Cabrera, L., Amiano, P., Ardanaz, E., Barricarte, A., Berenguer, T., Chirlaque, M.D., Dorronsoro, M., Jakszyn, P., Larrañaga, N., Martínez, C., Navarro, C., Quirós, J.R., Sánchez, M.J., Tormo, M.J., González, C.A. (2007). Fruit and vegetable intakes, dietary antioxidant nutrients, and total mortality in Spanish adults: findings from the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Spain). The American Journal of Clinical Nutrition, 85(6), 1634–1642.
Alonso, A., de la Fuente, C., Martín-Arnau, A.M., de Irala, J., Alfredo Martínez, J., Martínez-González, M.Á. (2004). Fruit and vegetable consumption is inversely associated with blood pressure in a Mediterranean population with a high vegetable-fat intake: the Seguimiento Universidad de Navarra (SUN) Study. British Journal of Nutrition, 92(2), 311–319.
Caser, M., Chitarra, W., D’Angiolillo, F., Perrone, I., Demasi, S., Lovisolo, C., Pistelli, L., Pistelli, L., Scariot, V. (2019a). Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Industrial Crops and Products, 129, 85–96.
Caser, M., Demasi, S., Victorino, Í.M.M., Donno, D., Faccio, A., Lumini, E., Bianciotto, V., Scariot, V. (2019b). Arbuscular mycorrhizal fungi modulate the crop performance and metabolic profile of saffron in soilless cultivation. Agronomy, 9(5), 232.
Chen, G.L., Chen, S.G., Xiao, Y., Fu, N.L. (2018). Antioxidant capacities and total phenolic contents of 30 flowers. Industrial Crops and Products, 111, 430–445.
Covas, M.I., Fitó, M., Marrugat, J., Miró, E., Farré, M., De la Torre, R., Gimeno, E., López-Sabater, M.C., Lamuela-Raventós, R., De la Torre-Boronat, H.C. (2001). Coronary heart disease protective factors: Antioxidant effect of olive oil | Facteurs protecteurs de la maladie coronarienne: Effet antioxydant de l’huile d’olive. Therapie, 56(5), 607–611. Available at: [].
de Morais, J.S., Sant’Ana, A.S., Dantas, A.M., Silva, B.S., Lima, M.S., Borges, G.C., Magnani, M. (2020). Antioxidant activity and bioaccessibility of phenolic compounds in white, red, blue, purple, yellow and orange edible flowers through a simulated intestinal barrier. Food Research International, 131, art. no. 109046.
Del Bo, C., Bernardi, S., Marino, M., Porrini, M., Tucci, M., Guglielmetti, S., Cherubini, A., Carrieri, B., Kirkup, B., Kroon, P., Zamora-Ros, R., Liberona, N.H., Andres-Lacueva, C., Riso, P. (2019). Systematic review on polyphenol intake and health outcomes: is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients, 11(6), art. no. 1355.
Demasi, S., Caser, M., Donno, D., Ravetto Enri, S., Lonati, M., Scariot, V. (2021a). Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture. Folia Horticulturae, 33(1), 27-48.
Demasi, S., Caser, M., Lonati, M., Cioni, P. L., Pistelli, L., Najar, B., Scariot, V. (2018). Latitude and altitude influence secondary metabolite production in peripheral alpine populations of the mediterranean species Lavandula angustifolia Mill. Frontiers in Plant Science, 9, art. no. 983.
Demasi, S., Falla, N.M., Caser, M., Scariot, V. (2020). Postharvest aptitude of Begonia semperflorens and Viola cornuta edible flowers. Advances in Horticultural Science, 34(1S), 13–20. .
Demasi, S., Mellano, M.G., Falla, N.M., Caser, M., Scariot, V. (2021b). Sensory profile, shelf life, and dynamics of bioactive compounds during cold storage of 17 edible flowers. Horticulturae, 7(7), art. no. 166.
Falla, N.M., Contu, S., Demasi, S., Caser, M., Scariot, V. (2020). Environmental impact of edible flower production: A case study. Agronomy, 10(4), 1–17.
Fernandes, L., Casal, S., Pereira, J.A., Saraiva, J.A., Ramalhosa, E. (2020). An overview on the market of edible flowers. Food Reviews International, 36(3), 258–275.
Fiehn, O. (2002). Metabolomics — the link between genotypes and phenotypes. In C. Town (Eds.), Functional Genomics, Springer, Dordrecht, The Netherlands, pp. 155–171.
Fraga, C.G., Croft, K.D., Kennedy, D.O., Tomás-Barberán, F.A. (2019). The effects of polyphenols and other bioactives on human health. Food & Function, 10(2), 514–528.
Friedman, H., Agami, O., Vinokur, Y., Droby, S., Cohen, L., Refaeli, G., Resnick, N., Umiel, N. (2010). Characterization of yield, sensitivity to Botrytis cinerea and antioxidant content of several rose species suitable for edible flowers. Scientia Horticulturae, 123(3), 395–401.
González-Barrio, R., Periago, M.J., Luna-Recio, C., Garcia-Alonso, F.J., Navarro-González, I. (2018). Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chemistry, 252, 373–380.
Grassi, D., Necozione, S., Lippi, C., Croce, G., Valeri, L., Pasqualetti, P., Desideri, G., Blumberg, J.B., Ferri, C. (2005). Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension, 46(2), 398–405.
Grzeszczuk, M., Stefaniak, A., Pachlowska, A. (2016). Biological value of various edible flower species. Acta Scientiarum Polonorum Hortorum Cultus, 15(2), 109–119.
Guimarães, R., Barros, L., Carvalho, A.M., Ferreira, I.C.F.R. (2010). Studies on chemical constituents and bioactivity of Rosa micrantha: An alternative antioxidants source for food, pharmaceutical, or cosmetic applications. Journal of Agricultural and Food Chemistry, 58(10), 6277–6284.
Guo, X., Tresserra-Rimbau, A., Estruch, R., Martínez-González, M.A., Medina-Remón, A., Castañer, O., Corella, D., Salas-Salvadó, J., Lamuela-Raventós, R.M. (2016). Effects of polyphenol, measured by a biomarker of total polyphenols in urine, on cardiovascular risk factors after a long-term follow-up in the PREDIMED study. Oxidative Medicine and Cellular Longevity, 2016, 1–11.
Hansawasdi, C., Kawabata, J., Kasai, T. (2001). Hibiscus acid as an inhibitor of starch digestion in the Caco-2 cell model system. Bioscience, Biotechnology and Biochemistry, 65(9), 2087–2089.
Hou, D.X., Tong, X., Terahara, N., Luo, D., Fujii, M. (2005). Delphinidin 3-sambubioside, a Hibiscus anthocyanin, induces apoptosis in human leukemia cells through reactive oxygen species-mediated mitochondrial pathway. Archives of Biochemistry and Biophysics, 440(1), 101–109.
Julious, S.A. (2005). Sample size of 12 per group rule of thumb for a pilot study. Pharmaceutical Statistics, 4(4), 287–291.
Kim, J.K., So, H., Youn, M.J., Kim, H.J., Kim, Y., Park, C., Kim, S.J., Ha, Y.A., Chai, K.Y., Kim, S.M., Kim, K.Y., Park, R. (2007). Hibiscus sabdariffa L. water extract inhibits the adipocyte differentiation through the PI3-K and MAPK pathway. Journal of Ethnopharmacology, 114(2), 260–267.
Kong, C.S., Lee, J.I., Kim, J.A., Seo, Y. (2011). In vitro evaluation on the antiobesity effect of lignans from the flower buds of Magnolia denudata. Journal of Agricultural and Food Chemistry, 59(10), 5665–5670.
Kumar, N., Bhandari, P., Singh, B., Bari, S.S. (2009). Antioxidant activity and ultra-performance LC-electrospray ionization-quadrupole time-of-flight mass spectrometry for phenolics-based fingerprinting of rose species: Rosa damascena, Rosa bourboniana and Rosa brunonii. Food and Chemical Toxicology, 47(2), 361–367.
Kuntz, S., Rudloff, S., Asseburg, H., Borsch, C., Fröhling, B., Unger, F., Dold, S., Spengler, B., Römpp, A., Kunz, C. (2015). Uptake and bioavailability of anthocyanins and phenolic acids from grape/blueberry juice and smoothie in vitro and in vivo. British Journal of Nutrition, 113(7), 1044–1055.
Lattanzio, F., Greco, E., Carretta, D., Cervellati, R., Govoni, P., Speroni, E. (2011). In vivo anti-inflammatory effect of Rosa canina L. extract. Journal of Ethnopharmacology, 137(1), 880–885.
Lee, E.J., Kim, J.S., Kim, H.P., Lee, J.H., Kang, S.S. (2010). Phenolic constituents from the flower buds of Lonicera japonica and their 5-lipoxygenase inhibitory activities. Food Chemistry, 120(1), 134–139.
Li, A.N., Li, S., Li, H.B., Xu, D.P., Xu, X.R., Chen, F. (2014). Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. Journal of Functional Foods, 6(1), 319–330.
Lim, T.K. (2014a). Edible Medicinal And Non-Medicinal Plants. Volume 7, Flowers. Springer, Dordrecht, The Netherlands.
Lim, T. K. (2014b). Edible Medicinal and Non-Medicinal Plants. Volume 8, Flowers. Springer, Dordrecht, The Netherlands.
Lin, H.H., Huang, H.P., Huang, C.C., Chen, J.H., Wang, C.J. (2005). Hibiscus polyphenol-rich extract induces apoptosis in human gastric carcinoma cells via p53 phosphorylation and p38 MAPK/FasL cascade pathway. Molecular Carcinogenesis, 43(2), 86–99.
Liu, J., He, Z., Ma, N., Chen, Z.Y. (2020a). Beneficial effects of dietary polyphenols on high-fat diet-induced obesity linking with modulation of gut microbiota. Journal of Agricultural and Food Chemistry, 68(1), 33–47.
Liu, R.H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinaions of phytochemicals. The American Journal of Clinical Nutrition, 78(3), 517S-520S.
Lo, C.W., Huang, H.P., Lin, H.M., Chien, C.T., Wang, C.J. (2007). Effect of Hibiscus anthocyanins-rich extract induces apoptosis of proliferating smooth muscle cell via activation of P38 MAPK and p53 pathway. Molecular Nutrition & Food Research, 51(12), 1452–1460.
Loizzo, M.R., Pugliese, A., Bonesi, M., Tenuta, M.C., Menichini, F., Xiao, J., Tundis, R. (2016). Edible flowers: a rich source of phytochemicals with antioxidant and hypoglycemic properties. Journal of Agricultural and Food Chemistry, 64(12), 2467–2474.
Lu, B., Li, M., Yin, R. (2016). Phytochemical content, health benefits, and toxicology of common edible flowers: a review (2000–2015). Critical Reviews in Food Science and Nutrition, 56, S130–S148.
Manach, C., Mazur, A., Scalbert, A. (2005). Polyphenols and prevention of cardiovascular diseases. Current Opinion in Lipidology, 16(1), 77–84.
Martínez, M.C., Santiago, J.L., Boso, S., Gago, P., Álvarez-Acero, I., De Vega, M.E., Martínez-Bartolomé, M., Álvarez-Nogal, R., Molíst, P., Caser, M., Scariot, V., Gómez-García, D. (2020). Narcea — an unknown, ancient cultivated rose variety from northern Spain. Horticulture Research, 7(1), art. no. 44.
Medina-Remón, A., Barrionuevo-González, A., Zamora-Ros, R., Andres-Lacueva, C., Estruch, R., Martínez-González, M.-Á., Diez-Espino, J., Lamuela-Raventos, R.M. (2009). Rapid Folin–Ciocalteu method using microtiter 96-well plate cartridges for solid phase extraction to assess urinary total phenolic compounds, as a biomarker of total polyphenols intake. Analytica Chimica Acta, 634(1), 54–60.
Medina-Remón, A., Casas, R., Tressserra-Rimbau, A., Ros, E., Martínez-González, M. A., Fitó, M., Corella, D., Salas-Salvadó, J., Lamuela-Raventos, R.M., Estruch, R. (2017). Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: a substudy of the PREDIMED trial. British Journal of Clinical Pharmacology, 83(1), 114–128.
Mennen, L.I., Sapinho, D., Ito, H., Bertrais, S., Galan, P., Hercberg, S., Scalbert, A. (2006). Urinary flavonoids and phenolic acids as biomarkers of intake for polyphenol-rich foods. British Journal of Nutrition, 96(1), art. no. 191.
Mohsen, E., Younis, I.Y., Farag, M.A. (2020). Metabolites profiling of Egyptian Rosa damascena Mill. flowers as analyzed via ultra-high-performance liquid chromatography-mass spectrometry and solid-phase microextraction gas chromatography-mass spectrometry in relation to its anti-collagenase skin effect. Industrial Crops and Products, 155, art. no. 112818.
Najar, B., Demasi, S., Caser, M., Gaino, W., Cioni, P.L., Pistelli, L., Scariot, V. (2019). Cultivation substrate composition influences morphology, volatilome and essential oil of Lavandula angustifolia Mill. Agronomy, 9(8), art. no. 411.
Navarro-González, I., González-Barrio, R., García-Valverde, V., Bautista-Ortín, A.B., Periago, M.J. (2015). Nutritional composition and antioxidant capacity in edible flowers: Characterisation of phenolic compounds by HPLC-DAD-ESI/MSn. International Journal of Molecular Sciences, 16(1), 805–822.
Neveu, V., Perez-Jiménez, J., Vos, F., Crespy, V., du Chaffaut, L., Mennen, L., Knox, C., Eisner, R., Cruz, J., Wishart, D., Scalbert, A. (2010). Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database, 2010, bap024–bap024.
Nielsen, S.E., Freese, R., Kleemola, P., Mutanen, M. (2002). Flavonoids in human urine as biomarkers for intake of fruits and vegetables. Cancer Epidemiology Biomarkers and Prevention, 11(5), 459–466. Available at: [].
Oboh, G., Ademosun, A.O., Ayeni, P.O., Omojokun, O.S., Bello, F. (2015). Comparative effect of quercetin and rutin on α-amylase, α-glucosidase, and some pro-oxidant-induced lipid peroxidation in rat pancreas. Comparative Clinical Pathology, 24(5), 1103–1110.
Ozdal, T., Sela, D.A., Xiao, J., Boyacioglu, D., Chen, F., Capanoglu, E. (2016). The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients, 8(2), art. no. 78.
Pal, P.K., Singh, R.D. (2013). Understanding crop-ecology and agronomy of Rosa damascena Mill. for higher productivity. Australian Journal of Crop Science, 7(2), 196–205.
Pérez-Jiménez, J., Hubert, J., Hooper, L., Cassidy, A., Manach, C., Williamson, G., Scalbert, A. (2010a). Urinary metabolites as biomarkers of polyphenol intake in humans: a systematic review. The American Journal of Clinical Nutrition, 92(4), 801–809.
Pérez-Jiménez, J., Neveu, V., Vos, F., Scalbert, A. (2010b). Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. European Journal of Clinical Nutrition, 64(S3), S112–S120.
Piccolella, S., Crescente, G., Pacifico, F., Pacifico, S. (2018). Wild aromatic plants bioactivity: a function of their (poly)phenol seasonality? A case study from Mediterranean area. Phytochemistry Reviews, 17(4), 785–799.
Pires, T.C.S.P., Barros, L., Santos-Buelga, C., Ferreira, I.C.F.R. (2019). Edible flowers: Emerging components in the diet. Trends in Food Science & Technology, 93, 244–258.
Preuss, H.G., Echard, B., Bagchi, D., Stohs, S. (2007). Inhibition by natural dietary substances of gastrointestinal absorption of starch and sucrose in rats and pigs: 1. Acute studies. International Journal of Medical Sciences, 4(4), 196–202.
Rop, O., Mlcek, J., Jurikova, T., Neugebauerova, J., Vabkova, J. (2012). Edible flowers — A new promising source of mineral elements in human nutrition. Molecules, 17(6), 6672–6683.
Rothwell, J.A., Perez-Jimenez, J., Neveu, V., Medina-Remon, A., M’Hiri, N., Garcia-Lobato, P., Manach, C., Knox, C., Eisner, R., Wishart, D.S., Scalbert, A. (2013). Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database, 2013, art. no. bat070.
Roura, E., Andrés-Lacueva, C., Estruch, R., Lamuela-Raventós, R.M. (2006). Total polyphenol intake estimated by a modified folin-ciocalteu assay of urine. Clinical Chemistry, 52(4), 749–752.
Santos-Buelga, C., Gonzalez-Manzano, S., Dueñas, M., Gonzalez-Paramas, A.M. (2012). Extraction and isolation of phenolic compounds. Methods in Molecular Biology, 864, 427–464.
Scariot, V., Gaino, W., Demasi, S., Caser, M., Ruffoni, B. (2018). Flowers for edible gardens: combinations of species and colours for northwestern Italy. Acta Horticulturae, 1215, 363–368.
Shader, R.I. (2015). Proof of feasibility: what a pilot study is and is not. Clinical Therapeutics, 37(7), 1379–1380.
Slinkard, K., Singleton, V.L. (1977). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28(1), 49–55.
Smulders, M.J.M., Arens, P., Bourke, P.M., Debener, T., Linde, M., De Riek, J., Leus, L., Ruttink, T., Baudino, S., Hibrant Saint-Oyant, L., Clotault, J., Foucher, F. (2019). In the name of the rose: a roadmap for rose research in the genome era. Horticulture Research, 6(1), art. no. 65.
Spencer, J.P.E., Abd El Mohsen, M.M., Minihane, A.M., Mathers, J.C. (2008). Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. British Journal of Nutrition, 99(1), 12–22.
Takahashi, J.A., Rezende, F.A.G.G., Moura, M.A.F., Dominguete, L.C.B., Sande, D. (2020). Edible flowers: Bioactive profile and its potential to be used in food development. Food Research International, 129, art. no. 108868.
Teng, H., Chen, L. (2019). Polyphenols and bioavailability: an update. Critical Reviews in Food Science and Nutrition, 59(13), 2040–2051.
Tomas-Barberan, F., García-Villalba, R., Quartieri, A., Raimondi, S., Amaretti, A., Leonardi, A., Rossi, M. (2014). In vitro transformation of chlorogenic acid by human gut microbiota. Molecular Nutrition & Food Research, 58(5), 1122–1131.
Tresserra-Rimbau, A., Rimm, E.B., Medina-Remón, A., Martínez-González, M.A., de la Torre, R., Corella, D., Salas-Salvadó, J., Gómez-Gracia, E., Lapetra, J., Arós, F., Fiol, M., Ros, E., Serra-Majem, L., Pintó, X., Saez, G.T., Basora, J., Sorlí, J.V., Martínez, J.A., Vinyoles, E., Ruiz-Gutiérrez, V., Estruch, R., Lamuela-Raventós, R.M. (2014a). Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutrition, Metabolism and Cardiovascular Diseases, 24(6), 639–647.
Tresserra-Rimbau, A., Rimm, E.B., Medina-Remón, A., Martínez-González, M.A., López-Sabater, M.C., Covas, M.I., Corella, D., Salas-Salvadó, J., Gómez-Gracia, E., Lapetra, J., Arós, F., Fiol, M., Ros, E., Serra-Majem, L., Pintó, X., Muñoz, M.A., Gea, A., Ruiz-Gutiérrez, V., Estruch, R., Lamuela-Raventós, R.M. (2014b). Polyphenol intake and mortality risk: a re-analysis of the PREDIMED trial. BMC Medicine, 12(1), art. no. 77.
Velusami, C.C., Agarwal, A., Mookambeswaran, V. (2013). Effect of Nelumbo nucifera petal extracts on lipase, adipogenesis, adipolysis, and central receptors of obesity. Evidence-Based Complementary and Alternative Medicine, 2013, art. no. 145925.
Wedick, N.M., Pan, A., Cassidy, A., Rimm, E.B., Sampson, L., Rosner, B., Willett, W., Hu, F.B., Sun, Q., van Dam, R.M. (2012). Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. The American Journal of Clinical Nutrition, 95(4), 925–933.
Zamora-Ros, R., Rabassa, M., Cherubini, A., Urpí-Sardà, M., Bandinelli, S., Ferrucci, L., Andres-Lacueva, C. (2013). High concentrations of a urinary biomarker of polyphenol intake are associated with decreased mortality in older adults. The Journal of Nutrition, 143(9), 1445–1450.
Zamora-Ros, R., Rabassa, M., Cherubini, A., Urpi-Sarda, M., Llorach, R., Bandinelli, S., Ferrucci, L., Andres-Lacueva, C. (2011). Comparison of 24-h volume and creatinine-corrected total urinary polyphenol as a biomarker of total dietary polyphenols in the Invecchiare InCHIANTI study. Analytica Chimica Acta, 704(1-2), 110–115.
Zhang, J., Rui, X., Wang, L., Guan, Y., Sun, X., Dong, M. (2014). Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation. Food Control, 42, 125–131.
Zheng, J., Yu, X., Maninder, M., Xu, B. (2018). Total phenolics and antioxidants profiles of commonly consumed edible flowers in China. International Journal of Food Properties, 21(1), 1524–1540.
Editorial: Edible flowers: Understanding the effect of genotype, preharvest, and postharvest on quality, safety, and consumption
Valentina Scariot, Antonio Ferrante, Daniela Romano
Frontiers in Plant Science
Effect of Packaging on Microbial Quality of Edible Flowers During Refrigerated Storage
Aleksandra Wilczyńska, Anita Kukułowicz, Anna Lewandowska
Polish Journal of Food and Nutrition Sciences
From Fresh to Dried Lavender Flower: Changes in Phytochemical Profile According to Drying Method
Matteo Caser, Nicole Falla, Sonia Demasi, Valentina Scariot
Journals System - logo
Scroll to top