Search for Author, Title, Keyword
ORIGINAL ARTICLE
Influence of Cellulase Pretreatment on the Quality Characteristics, Total Phenolic Content, and Antioxidant Capacity of Hydraulic Press-Extracted Grapeseed Oil
 
More details
Hide details
1
Departamento de Tecnología de Alimentos y Productos Agropecuarios , Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, Lima 15024, Peru
 
2
Instituto de Investigación de Bioquímica y Biología Molecular, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina , Lima 15024, Peru
 
3
Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria - Unità di Ricerca per la Zootecnia e l’Acquacoltura (CREA-ZA), viale Piacenza 29, 26900 Lodi, Italy
 
4
Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
 
 
Submission date: 2025-07-14
 
 
Acceptance date: 2025-11-12
 
 
Corresponding author
Katheryn S. Lezama Guerra   

Departamento de Tecnología de Alimentos y Productos Agropecuarios , Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Av. La Molina s/n, La Molina, Lima 15024, Peru
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Grape seeds, a by-product of winemaking, are a valuable source of oil, rich in essential fatty acids and bioactive compounds. This study evaluated the influence of cellulase pretreatment on the hydraulic press extraction of oil from Vitis labrusca × Vitis vinifera grape seeds. Grape seed powder (GSP) was treated with cellulase at enzyme-to-substrate ratios of 0.5 and 2 g/100 g for 4 h and 18 h. The extracted oils were analysed for yield, fatty acid composition, total phenolic content, antioxidant capacity, and physicochemical properties. Enzymatic pretreatment significantly enhanced oil recovery compared to the untreated control, with extraction efficiency increasing from 58.21% to 95.05% and oil yield from 6.07 to 9.89 g/100 g GSP. The total phenolic content in oils obtained with cellulase pretreatment ranged from 148.7 to 279.2 mg GAE/kg and was higher compared to 127.5 mg GAE/kg determined in the control oil. Cellulase pretreatment also increased the antioxidant capacity of the oils, particularly in the oil treated at the enzyme-to-substrate ratio of 0.5 g/100 g for 18 h, which showed the highest values in the DPPH and ABTS assays (1.81 and 0.128 mmol TE/kg oil, respectively). The oils maintained low moisture content (0.47–0.48 g/100 g), moderate acidity index (2.00–2.89 mg KOH/g), acceptable peroxide values (7.24–11.24 meq O2/kg), and stable density (0.92 g/mL). The fatty acid profile remained unchanged, dominated by linoleic acid (69.8% of total fatty acids). Overall, cellulase pretreatment effectively increased oil yield and improved the chemical and functional quality of grape seed oil without compromising its physicochemical stability.
ACKNOWLEDGEMENTS
The authors express their deepest gratitude to the Universidad Nacional Agraria La Molina for providing its facilities for the development of this study. Furthermore, the valuable contribution of Eng. Cesar Moya García, during the extraction and physicochemical characterization of the analyzed samples, is recognized and highly appreciated.
FUNDING
This research was funded by the National Council for Science, Technology and Technological Innovation of Peru (CONCYTEC).
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
REFERENCES (53)
1.
Anwar, F., Zreen, Z., Sultana, B., Jamil, A. (2013). Enzyme-aided cold pressing of flaxseed (Linum usitatissimum L.): Enhancement in yield, quality, and phenolics of the oil. Grasas y Aceites, 64(5), 463-471. https://doi.org/10.3989/gya.13....
 
2.
AOAC (1990). Method 920.160; Cd 18.90. In: Official Methods of Analysis (15th ed.). The Association of Official Analytical Chemists International, Washington, DC, USA.
 
3.
AOAC (1998). Official Methods of Analysis. The Association of Official Analytical Chemists International, Washington, DC, USA.
 
4.
AOAC (2007). Method 920.159; Method 920.212; Method 921.08; Method 926.12; Method 940.28; Method 965.33. In: Official Methods of Analysis (18th ed.). The Association of Official Analytical Chemists International, Washington, DC, USA.
 
5.
Brand-Williams, W., Cuvelier, M.-E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Science Technology, 28(1), 25-30. https://doi.org/10.1016/S0023-....
 
6.
Brienza, F., Calani, L., Bresciani, L., Mena, P., Rapacioli, S. (2025). Optimized enzymatic extraction of phenolic compounds from Verbascum nigrum L.: A sustainable approach for enhanced extraction of bioactive compounds. Applied Sciences), 15(3), art. no. 1405. https://doi.org/10.3390/app150....
 
7.
Candan, A., Arslan, D. (2021). Enzymatic pre-treatment in cold pressing: Influence on flaxseed, apricot kernel and grape seed oils. Grasas y Aceites, 72(4), art. no. e432. https://doi.org/10.3989/gya.08....
 
8.
Carmona-Jiménez, Y., Igartuburu, J.M., Guillén-Sánchez, D.A., García-Moreno, M.V. (2022). Fatty acid and tocopherol composition of pomace and seed oil from five grape varieties southern Spain. Molecules, 27(20), art. no. 6980. https://doi.org/10.3390/molecu....
 
9.
Codex Alimentarius (1999). CSX 210: Standard for Named Vegetable Oils. Revised and amended in 2023,, pp. 1-19.
 
10.
de Menezes, M.L., Johann, G., Diório, A., Schuelter Boeing, J., Visentainer, J.V., Raimundini Aranha, A.C., Curvelo Pereira, N. (2023). Comparison of the chemical composition of grape seed oil extracted by different methods and conditions. Journal of Chemical Technology & Biotechnology, 98(5), 1103-1113. https://doi.org/10.1002/jctb.7....
 
11.
Di Stefano, V., Bongiorno, D., Buzzanca, C., Indelicato, S., Santini, A., Lucarini, M., Fabbrizio, A., Mauro, M., Vazzana, M., Arizza, V., Durazzo, A. (2021). Fatty acids and triacylglycerols profiles from Sicilian (cold pressed vs. Soxhlet) grape seed oils. Sustainability, 13(23), art. no. 13038. https://doi.org/10.3390/su1323....
 
12.
Fernández, J., Pascual, G., Silva-Jaimes, M., Salvá, B., Guevara, A., Encina, C. (2018). Effect of enzymatic treatment of moringa seed (Moringa oleifera) on the physico-chemical characteristics of oil obtained by extraction with press expeller. Scientia Agropecuaria, 9(3), 371-380 (in Spanish, English abstract). https://doi.org/10.17268/sci.a....
 
13.
Gharby, S., Asbbane, A., Nid Ahmed, M., Gagour, J., Hallouch, O., Oubannin, S., Bijla, L., Goh, K.W., Bouyahya, A., Ibourki, M. (2025). Vegetable oil oxidation: Mechanisms, impacts on quality, and approaches to enhance shelf life. Food Chemistry: X, 28, art. no. 102541. https://doi.org/10.1016/j.foch....
 
14.
Gitea, M.A., Gitea, D., Tit, D.M., Bungau, S.G., Bogdan, M.A., Radu, A.F., Dulf, F.V., Pasca, M.B. (2023). Organically cultivated vine varieties — Distinctive qualities of the oils obtained from grape seeds. Sustainability, 15(14), art. no. 11037. https://doi.org/10.3390/su1514....
 
15.
Günç Ergönül, P., Aksoylu Özbek, Z. (2018). Identification of bioactive compounds and total phenol contents of cold-pressed oils from safflower and camelina seeds. Food Measure, 12, 2313–2323. https://doi.org/10.1007/s11694....
 
16.
Gunstone, F.D. (2008). Chapter 4 – Analytical Parameters. In F.D. Gunstone (Ed.), Oils and Fats in the Food Industry: Food Industry Briefing Series, Willey-Blackwell, pp. 37-58. https://doi.org/10.1002/978144....
 
17.
Hagos, M., Yaya, E.E., Chandravanshi, B.S., Redi-Abshiro, M. (2023). Determination of fatty acid composition by GC-MS and physicochemical parameters of pumpkin (Cucurbita maxima) seed oil cultivated in Ethiopia. Bulletin of the Chemical Society of Ethiopia, 37(3), 565-577. https://dx.doi.org/10.4314/bcs....
 
18.
IOC (2019). Trade Standards Applying to Olive Oils and Olive Pomace Oils. International Olive Council, COI/T.15/NC No 3/Rev.
 
19.
Kalili, A., El Ouafi, R., Aboukhalaf, A., Naciri, K., Tbatou, M., Moujabbir, S., Belahyan, A., Belahsen, R. (2023). Nutritional composition and bioactive compounds in a local grape variety Vitis vinifera L. cultivated in Morocco. Rocznik Państwowego Zakładu Higieny, 74(1), 41–48. https://doi.org/10.32394/rpzh.....
 
20.
Kapcsándi, V., Lakatos, E.H., Sik, B., Linka, L.Á., Székelyhidi, R. (2021). Characterization of fatty acid, antioxidant, and polyphenol content of grape seed oil from different Vitis vinifera L. varieties. Oilseeds and fats, Crops and Lipids, 28, art. no. 30. https://doi.org/10.1051/ocl/20....
 
21.
Kaseke, T., Opara, U.L., Fawole, O.A. (2021). Effects of enzymatic pretreatment of seeds on the physicochemical properties, bioactive compounds, and antioxidant activity of pomegranate seed oil. Molecules, 26(15), art. no. 4575. https://doi.org/10.3390/molecu....
 
22.
Konuskan, D.B., Kamiloglu, O., Demirkeser, O. (2019). Fatty acid composition, total phenolic content and antioxidant activity of grape seed oils obtained by cold-pressed and solvent extraction. Indian Journal of Pharmaceutical Education and Research, 53(1), 144-150. https://doi.org/10.5530/ijper.....
 
23.
Lamani, S., Anu-Appaiah, K.A., Murthy, H.N., Dewir, Y.H., Rihan, H.Z. (2021). Fatty acid profile, tocopherol content of seed oil, and nutritional analysis of seed cake of wood apple (Limonia acidissima L.), an underutilized fruit-yielding tree species. Horticulturae, 7(9), art. no. 275. https://doi.org/10.3390/hortic....
 
24.
Latif, S., Diosady, L.L., Anwar, F. (2008). Enzyme-assisted aqueous extraction of oil and protein from canola (Brassica napus L.) seeds. European Journal of Lipid Science and Technology, 110(10), 887–892. https://doi.org/10.1002/ejlt.2....
 
25.
Liu, J.J., Gasmalla, M.A.A., Li, P., Yang, R. (2016). Enzyme-assisted extraction processing from oilseeds: Principle, processing and application. Innovative Food Science & Emerging Technologies, 35, 184-193. https://doi.org/10.1016/j.ifse....
 
26.
Łubek-Nguyen, A., Ziemichód, W., Olech, M. (2022). Application of enzyme-assisted extraction for the recovery of natural bioactive compounds for nutraceutical and pharmaceutical applications. Applied Sciences, 12(7), art. no. 3232. https://doi.org/10.3390/app120....
 
27.
Mollica, A., Scioli, G., Della Valle, A., Cichelli, A., Novellino, E., Bauer, M., Kamysz, W., Llorent-Martínez, E.J., Fernández-de Córdova, M.L., Castillo-López, R., Ak, G., Zengin, G., Pieretti, S., Stefanucci, A. (2021). Phenolic analysis and in vitro biological activity of red wine, pomace and grape seeds oil derived from Vitis vinifera L. cv. Montepulciano d’Abruzzo. Antioxidants, 10(11), art. no. 1704. https://doi.org/10.3390/antiox....
 
28.
Odabaşioğlu, M.İ. (2023). Total oil and fatty acid composition of the seed of 16 grape genotypes with different skin colors and ripening times. Journal of Berry Research, 13(4), 325-342. https://doi.org/10.3233/JBR-23....
 
29.
OIV (2024). International Organisation of Vine and Wine. Statistical Brief – Wine, Table Grapes and Dried Grapes in 2024. Paris: OIV. https://www.oiv.int/sites/defa....
 
30.
Oluwole, O., Fernando, W.B., Lumanlan, J., Ademuyiwa, O., Jayasena, V. (2022). Role of phenolic acid, tannins, stilbenes, lignans and flavonoids in human health – a review. International Journal of Food Science & Technology, 57(10), 6326-6335. https://doi.org/10.1111/ijfs.1....
 
31.
Özyurt, V.H., Çakaloğlu, B., Otles, S. (2021). Optimization of cold press and enzymatic‐assisted aqueous oil extraction from tomato seed by response surface methodology: Effect on quality characteristics. Journal of Food Processing and Preservation, 45(5), art. no. e15471. https://doi.org/10.1111/jfpp.1....
 
32.
Palma, J.C., Fabián-Campos, J., Dioses-Morales, J.J., Arias-Durand, A.D., Espinoza-Córdova, G., Gonzales-Uscamayta, M., Rengifo-Maravi, J.C., Chire-Murillo, E.T., Caro Sánchez-Benites, V.A., Jorge-Montalvo, P., Visitación-Figueroa, L. (2025). Pisco, an appellation of origin from Peru: A review. Heliyon, 11(3), art. no. e42251. https://doi.org/10.1016/j.heli....
 
33.
Prévot, G., Mordret, M. (1976). Utilisation des colonnes capillaires de verre pour l’analyse des corps gras par chromatographie en phase gazeuse. Revue Francaise des Corps Gras, 23, 409-423 (in French).
 
34.
Ravagli, C., Pasini, F., Marzocchi, S., Caboni, M.F. (2025). Oxidation of fatty acids in oils subjected to mild temperature stress: The case of grapeseed oil. Journal of Food Composition and Analysis, 148(Part 1), art. no. 108208. https://doi.org/10.1016/j.jfca....
 
35.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-....
 
36.
Rivera Chávez, Z.B., Porcaro, A., De Simone, M.C., Guida, D. (2025). Improving sustainable viticulture in developing countries: A case study. Sustainability, 17(12), art. no. 5338. https://doi.org/10.3390/su1712....
 
37.
Rombaut, N., Savoire, R., Thomasset, B., Castello, J., Van Hecke E., Lanoisellé, L. (2015). Optimization of oil yield and oil total phenolic content during grapeseed cold screw pressing. Industrial Crops and Products, 63, 26-33. https://doi.org/10.1016/j.indc....
 
38.
Samaniego Sánchez, C., Troncoso González, A.M., García-Parrilla, M.C., Quesada Granados, J.J., López García de la Serrana, H., López Martínez, M.C. (2007). Different radical scavenging test in virgin olive oil and their relation to the total phenol content. Analytica Chimica Acta, 593(1), 103-107. https://doi.org/10.1016/j.aca.....
 
39.
Santoso, H., Iryanto, Inggrid, M. (2014). Effects of temperature, pressure, preheating time and pressing time on rubber seed oil extraction using hydraulic press. Procedia Chemistry, 9, 248–256. https://doi.org/10.1016/j.proc....
 
40.
Saykova, I., Tylkowski, B., Popovici, C., Peev, G. (2018). Extraction of phenolic and flavonoid compounds from solid wastes of grape seed oil production by cold pressing. Journal of Chemical Technology & Metallurgy, 53(2), 177-190.
 
41.
Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-....
 
42.
Sun, L., Wang, H., Wei, J., Xue, Y., Lan, S., Li, X., Yu, D., Wang, J. (2022). Extracting oil from grape seed using a combined wet enzymatic process and pressing. Innovative Food Science & Emerging Technologies, 77, art. no. 102941. https://doi.org/10.1016/j.ifse....
 
43.
Symoniuk, E., Wroniak, M., Napiórkowska, K., Brzezińska, R., Ratusz, K. (2022). Oxidative stability and antioxidant activity of selected cold-pressed oils and oils mixtures. Foods, 11(11), art. no. 1597. https://doi.org/10.3390/foods1....
 
44.
Teixeira, C.B., Macedo, G.A., Macedo, J.A., da Silva, L.H.M., Rodrigues, A.M.D.C. (2013). Simultaneous extraction of oil and antioxidant compounds from oil palm fruit (Elaeis guineensis) by an aqueous enzymatic process. Bioresource Technology, 129, 575-581. https://doi.org/10.1016/j.bior....
 
45.
Tobar, P., Moure, A., Soto, C., Chamy, R., Zúñiga, M.E. (2005). Winery solid residue revalorization into oil and antioxidant with nutraceutical properties by an enzyme-assisted process. Water Science & Technology, 51(1), 47-52. https://doi.org/10.2166/wst.20....
 
46.
Tociu, M., Hirtopeanu, A., Stanescu, M.D. (2021). Enzymatic pre-treatment of grape seeds for an oil with higher antioxidant activity. Grasas y Aceites, 72(4), art. no. e434. https://doi.org/10.3989/gya.10....
 
47.
Ubaid, M., Sainia, C.S. (2024). Evaluation of different green technological approaches for the extraction of oil from grape seeds: A comparative study. Grasas y Aceites, 75(4), art. no. 2173. https://doi.org/10.3989/gya.12....
 
48.
Vardakas, A., Kechagias, A., Penov, N., Giannakas, A.E. (2024). Optimization of enzymatic assisted extraction of bioactive compounds from Olea europaea leaves. Biomass, 4(3), 647-657. https://doi.org/10.3390/biomas....
 
49.
Vidal, N.P., Roman, L., Swaraj, V.S., Ragavan, K.V., Simsek, S., Rahimi, J., Kroetsch, B., Martinez, M.M. (2022). Enhancing the nutritional value of cold-pressed oilseed cakes through extrusion cooking. Innovative Food Science & Emerging Technologies, 77, art. no. 102956. https://doi.org/10.1016/j.ifse....
 
50.
Vovk, H., Karnpakdee, K., Ludwig, R., Nosenko, T. (2023). Enzymatic pretreatment of plant cells for oil extraction. Food Technology and Biotechnology, 61(2), 160–178. https://doi.org/10.17113/ftb.6....
 
51.
Vucane, S., Cinkmanis, I., Juhnevica-Radenkova, K., Sabovics, M. (2024). Revolutionizing phenolic content determination in vegetable oils: A cutting-edge approach using smartphone-based image analysis. Foods, 13(11), art. no. 1700. https://doi.org/10.3390/foods1....
 
52.
Yang, C., Shang, K., Lin, C., Wang, C., Shi, X., Wang, H., Li, H. (2021). Processing technologies, phytochemical constituents, and biological activities of grape seed oil (GSO): A review. Trends in Food Science & Technology, 116, 1074-1083. https://doi.org/10.1016/j.tifs....
 
53.
Zaheri Abdehvand, Z., Javaherian, M., Kolahi, M., Sabaeian, M. (2025). Evaluation of the quality and phytochemical composition of sesame oil extracted using cellulase and pepsin enzymes. Applied Food Research, 5(2), art. no. 101046. https://doi.org/10.1016/j.afre....
 
eISSN:2083-6007
ISSN:1230-0322
Journals System - logo
Scroll to top