Search for Author, Title, Keyword
ORIGINAL ARTICLE
Truffle Species Discrimination Based on Their Chemical Composition, Chromaticity Coordinates and Antioxidant Capacity
 
More details
Hide details
1
Institute of Chemistry & Biology of Membranes & Nano-Objects, University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600, Pessac, France
 
2
Conditions Extrêmes et Matériaux: Haute Température et Irradiation, University of Orleans, CEMHTI-CNRS UPR3079, 1D avenue de la Recherche Scientifique 45071 Orléans, France
 
 
Submission date: 2024-02-19
 
 
Acceptance date: 2024-07-10
 
 
Corresponding author
Sullivan Renouard   

Institute of Chemistry & Biology of Membranes & Nano-objects, University of Bordeaux, CNRS, France
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Some edible truffle species are more sought after and expensive than others while they have a similar colour and appearance. This therefore leads to high risk of fraud. To prevent these frauds, this study proposes to explore the chemical composition and antioxidant capacity to discriminate the six-truffle species encountered in France. To achieve this, infrared spectrometry analysis, chromaticity measures and atomic absorption analysis were performed on dehydrated truffle powder as well as antioxidant capacity (ABTS and CUPRAC assays) and total phenolic content analyses were performed for truffle aqueous ethanol extracts. Infrared spectrometry analysis provided results allowing to discriminate the six-truffle species using a chitin/chitosan ratio (1,659 cm-1/1,627 cm-1) determined in the range of 0.75 to 0.93 or a β/α-glucan ratio (889 cm-1/850 cm-1) in the range from 1.50 to 1.81. Colour coordinates, including L*, a* and b* values, ranged from 20.56 to 36.35, 1.62 to 4.23 and 2.78 to12.9, respectively, and differed significantly between species. Truffle calcium and magnesium content was 2.62–0.48 mg/g dry weight and -0.91–0.21 mg/g dry weight, which also differentiated truffle species. Total phenolic content and antioxidant capacity analyses allowed to discriminate most of the six-truffle species but not each of the species. Thus, biophysical approaches and, to a lesser extent, the antioxidant activity assays, and total phenolic content are credible means of identifying truffle species found in France.
FUNDING
The study received no external funds.
CONFLICT OF INTEREST
Authors declare no conflict of interests.
 
REFERENCES (44)
1.
Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S.E., Bektaşoğlu, B., Berker, K.I., Özyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7), 1496-1547. https://doi.org/10.3390/120714....
 
2.
Apak, R., Özyürek, M., Güçlü, K., Çapanoğlu, E. (2016). Antioxidant activity/capacity measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and lipid peroxidation assays. Journal of Agricultural and Food Chemistry, 64(5), 1028-1045. https://doi.org/10.1021/acs.ja....
 
3.
Beara, I.N., Lesjak, M.M., Četojević-Simin, D.D., Marjanović, Z.S., Ristić, J.D., Mrkonjić, Z.O., Mimica-Dukić, N.M. (2014). Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of black (Tuber aestivum Vittad.) and white (Tuber magnatum Pico) truffles. Food Chemistry, 165, 460-466. https://doi.org/10.1016/j.food....
 
4.
Bešlo, D., Golubić, N., Rastija, V., Agić, D., Karnaš, M., Šubarić, D., Lučić, B. (2023). Antioxidant activity, metabolism, and bioavailability of polyphenols in the diet of animals. Antioxidants, 12(6), art. no. 1141. https://doi.org/10.3390/antiox....
 
5.
Bonito, G.M., Gryganskyl, A.P., Trappe, J.M., Vilgalys, R. (2010). A global meta-analysis of Tuber ITS rDNA sequences: Species diversity, host associations and long-distance dispersal. Molecular Ecology, 19(22), 4994–5008. https://doi.org/10.1111/j.1365....
 
6.
Bowman, S.M., Free, S. (2006). The structure and synthesis of the fungal cell wall. BioEssays, 28(8), 799-808. https://doi.org/10.1002/bies.2....
 
7.
Ceruti, A., Fontana, A., Nosenzo, C. (Eds). (2003). European Species of the Genus Tuber. A Historical Revision. Monografie di Museo Regionale di Scienze Naturali, Torino, p. 467 (in Italian).
 
8.
Číž, M., Dvořáková, A., Skočková, V., Kubala, L. (2020). The role of dietary phenolic compounds in epigenetic modulation involved in inflammatory processes. Antioxidants, 9(8), art. no. 691. https://doi.org/10.3390/antiox....
 
9.
Dahmane, E.M., Taourirte, M., Eladlani, N., Rhaz, M. (2014). Extraction and characterization of chitin and chitosan from Parapenaeus longirostris from Moroccan local sources. International Journal of Polymer Analysis and Characterization, 19(4), 342-351. https://doi.org/10.1080/102366....
 
10.
Gessler, N.N., Egorova, A.S., Belozerskaya, T. (2014). Melanin pigments of fungi under extreme environmental conditions (Review). Applied Biochemistry and Microbiology, 50, 105-113. https://doi.org/10.1134/S00036....
 
11.
Grošev, V., Božac, R., Puppels, G. (2001). Vibrational spectroscopic characterization of wild growing mushroom and toadstools. Spectrochemica Acta, 57(14), 2815-2829. https://doi.org/10.1016/S1386-....
 
12.
Jeandroz, S., Murat, C., Wang, Y.J., Bonfante, P., Le Tacon, F. (2008). Molecular phylogeny and historical biogeography of the genus Tuber, the ‘true truffles’. Journal of Biogeography, 35(5), 815–829. https://doi.org/10.1111/j.1365....
 
13.
Lange, M., Peiter, E. (2020). Calcium transport proteins in fungi: The phylogenetic diversity of their relevance for growth, virulence, and stress resistance. Frontiers in Microbiology, 10, art. no. 3100. https://doi.org/10.3389/fmicb.....
 
14.
Lin, M., Al-Holy, M., Al-Qadiri, H., Kang, D., Cavinato, A., Huang, Y., Rasco, B.A. (2004). Discrimination of intact and injured Listeria monocytogenes by Fourier Transform Infrared Spectroscopy and Principal Component Analysis. Journal of Agricultural and Food Chemistry, 52(19), 5769-5772. https://doi.org/10.1021/jf0493....
 
15.
Liu, Y., Singh, S., Pattanaik, S., Wang, H., Yuan, L. (2023). Light regulation of the biosynthesis of phenolics, terpenoids, and alkaloids in plants. Communications Biology, 6, art. no. 1055. https://doi.org/10.1038/s42003....
 
16.
Merényi, Z., Varga, T., Bratek, Z. (2016). Tuber brumale: A controversial Tuber species. In A. Zambonelli, M. Iotti, C. Murat (Eds.), True Truffle (Tuber spp.) in the World. Ecology, Systematics and Biochemistry, Series: Soil Biology, vol 47, Springer, Cham, pp. 49-68. https://doi.org/10.1007/978-3-....
 
17.
Mouyna, I., Dellière, S., Beauvais, A., Gravelat, F., Snarr, B., Lehoux, M., Zacharias, C., Sun, Y., de Jesus Carrion, S., Pearlman, E., Sheppard, D.C., Latgé, J.P. (2020). What are the functions of chitin deacetylases in Aspergillus fumigatus? Frontiers in Cellular and Infection Microbiology, 10, art. no. 28. https://doi.org/10.3389/fcimb.....
 
18.
Nosanchuk, J.D., Stark, R.E., Casadevall, A. (2015). Fungal melanin: What do we know about structure? Frontiers in Microbiology, 6, art. no. 1463. https://doi.org/10.3389/fmicb.....
 
19.
Paolocci, F., Rubini, A., Granetti, B., Arcioni, S. (1997). Typing Tuber melanosporum and Chinese black truffle species by molecular markers. FEMS Microbiology Letters, 153(2), 255-260. https://doi.org/10.1111/j.1574....
 
20.
Pappas, C., Tarantilis, P., Harizanis, P., Polissiou, M. (2003) New method for pollen identification by FT-IR spectroscopy. Applied Spectroscopy, 57(1), 23-27. https://doi.org/10.1366/000370....
 
21.
Pathare, P.B., Opara, U.L., Al-Said, F.A.L. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6, 36–60. https://doi.org/10.1007/s11947....
 
22.
Payne, K.J., Veis, A. (1988). Fourier transform IR spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolymers, 27(11), 1749–1760. https://doi.org/10.1002/bip.36....
 
23.
Piatti, D., Marconi, R., Caprioli, G., Zannotti, M., Giovannetti, R., Sagratini, G. (2024). White Acqualagna truffle (Tuber magnatum Pico): Evaluation of volatile and non-volatile profiles by GC-MS, sensory analyses and elemental composition by ICP-MS. Food Chemistry, 439, art. no. 138089. https://doi.org/10.1016/j.food....
 
24.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237. https://doi.org/10.1016/S0891-....
 
25.
Renouard, S., Hano, C., Doussot, J., Blondeau, J.P., Lainé, E. (2014). Characterization of ultrasonic impact on coir, flax and hemp fibers. Materials Letters, 119, 137-141. https://doi.org/10.1016/j.matl....
 
26.
Rubini, A., Paolocci, F., Granetti, B., Arcioni, S. (1998). Single step molecular characterization of morphologically similar black truffle species. FEMS Microbiology Letters, 164(1), 7-12. https://doi.org/10.1111/j.1574....
 
27.
Rytwo, G., Zakai, R., Wicklein B. (2015). The use of ATR-FTIR spectroscopy for quantification of adsorbed compounds. Journal of Spectroscopy, 2015, art. no. 727595. https://doi.org/10.1155/2015/7....
 
28.
Sancholle, M., Weete, J.D., Kulifaj, M., Montant, C. (1988). Changes in lipid composition during ascocarp development of the truffle, Tuber melanosporum. Mycologia, 80(6), 900-903. https://doi.org/10.1080/002755....
 
29.
Séjalon-Delmas, N., Roux, C., Martins, M., Kulifaj, M., Bécard, G., Dargent, R. (2000). Molecular tools for the identification of Tuber melanosporum in agroindustry. Journal of Agricultural and Food Chemistry, 48(6), 2608-2613. https://doi.org/10.1021/jf9910....
 
30.
Shah, N., Usvalampi, A., Chaudhary, S., Seppänen-Laakso, T., Marathe, S., Bankar, S., Singhal, R., Shamekh, S. (2020a). An investigation on changes in composition and antioxidant potential of mature and immature summer truffle (Tuber aestivum). European Food Research and Technology, 246, 723-731. https://doi.org/10.1007/s00217....
 
31.
Shah, N.N., Hokkanen, S., Pastinen, O., Eljamil, A., Shamekh, S. (2020b). A study on the fatty acid composition of lipids in truffles selected from Europe and Africa. 3 Biotech, 10, art. no. 415. https://doi.org/10.1007/s13205....
 
32.
Shavit, E. (2014). The history of desert truffle use. In V. Kagan-Zur, N. Roth-Bejerano, Y. Sitrit, A. Mort (Eds.), Desert Truffles, Phylogeny, Physiology, Distribution and Domestication, Series: Soil Biology, Springer, Berlin, pp. 217-241. https://doi.org/10.1007/978-3-....
 
33.
Silva, C., Lima, C., Pinheiro, A., Goés, J., Figueiró, S., Sombra, A. (2001). On the piezoelectricity of collagen-chitosan films. Physical Chemistry Chemical Physics, 3(18), 4154-4157. https://doi.org/10.1039/b10018....
 
34.
Singleton, V., Rossi, J. (1965). Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158. https://doi.org/10.5344/ajev.1....
 
35.
Spiteller, P. (2015). Chemical ecology of fungi. Natural Product Reports, 32, 971-993. https://doi.org/10.1039/C4NP00....
 
36.
Suo, C., Ma, L., Li, H., Sun, J., Li, C., Lin, M., Sun, T., Du, W., Li, Y., Gao, X., Meng, Y., Sai, S., Ding, C. (2018). Investigation of Cryptococcus neoformans magnesium transporters reveals important role of vacuolar magnesium transporter in regulating fungal virulence factors. MicrobiologyOpen, 7(3), art. no. e00564. https://doi.org/10.1002/mbo3.5....
 
37.
Synytsya, A., Novak, M. (2014). Structural analysis of glucans. Annals of Translational Medicine, 2(2), art. no. 17. https://atm.amegroups.org/arti....
 
38.
Tejedor-Calvo, E., Amara, K., Reis, F.S., Barros, L., Martins, A., Calhelha, R.C., Venturini, M.E., Blanco, D., Redondo, D., Marco, P., Ferreira, I.C.F.R. (2021). Chemical composition and evaluation of antioxidant, antimicrobial and antiproliferative activities of Tuber and Terfezia truffles. Food Research International, 140, art. no. 110071. https://doi.org/10.1016/j.food....
 
39.
Valand, R., Tanna, S., Lawson, G., Bengtström, L. (2019). A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Additives & Contaminants: Part A, 37(1), 19-38. https://doi.org/10.1080/194400....
 
40.
Wilson, D.W., Nash, P., Buttar, H.S., Griffiths, K., Singh, R., De Meester, F., Horiuchi, R., Takahashi, T. (2017). The role of food antioxidants, benefits of functional foods, and influence of feeding habits on the health of the older person: An overview. Antioxidants, 6(4), art. no. 81. https://doi.org/10.3390/antiox....
 
41.
Wu, Z., Meenu, M., Xu, B. (2021). Nutritional value and antioxidant activity of Chinese black truffle (Tuber indicum) grown in different geographical regions in China. LWT – Food Science and Technology, 135, art. no. 110226. https://doi.org/10.1016/j.lwt.....
 
42.
Yan, X., Wang, Y., Sang, X., Fan, L. (2017). Nutritional value, chemical composition and antioxidant activity of three Tuber species from China. AMB Express, 7, art. no. 136. https://doi.org/10.1186/s13568....
 
43.
Zehiroglu, C., Ozturk Sarikaya, S.B. (2019). The importance of antioxidants and place in today’s scientific and technological studies. Journal of Food Science and Technology, 56(11), 4757-4774. https://doi.org/10.1007/s13197....
 
44.
Zhao, D., Liu, G., Song, D., Liu, J., Zhou, Y., Ou, J., Sun, S. (2006). Fourier transform infrared spectroscopic study of truffles. ICO20: Biomedical Optics, SPIE Proceedings, 6026, 117-123. https://doi.org/10.1117/12.667....
 
eISSN:2083-6007
ISSN:1230-0322
Journals System - logo
Scroll to top